Ahmet Yıldız , Mehmet Kozak , Can Başaran , Özcan Özyıldırım
{"title":"Integrated approach for geothermal exploration: Case study from Salar area (Afyonkarahisar, Turkey)","authors":"Ahmet Yıldız , Mehmet Kozak , Can Başaran , Özcan Özyıldırım","doi":"10.1016/j.geothermics.2024.103068","DOIUrl":null,"url":null,"abstract":"<div><p>The intense investment demand in the geothermal sector in Afyonkarahisar province in recent years has enabled the utilization of geothermal waters such as district heating and greenhouse heating, electricity generation, and spa facilities and accelerated the exploration of new geothermal areas in the region. In this study, the Salar (Afyonkarahisar) region's geothermal potential was investigated using the mineralogy and geochemistry of hydrothermal alteration, hydrogeochemistry, and resistivity models obtained from magnetotelluric data. The Salar region is located within the Afyon-Akşehir Graben (AAG) and 10 km south of Afyonkarahisar province. The most important manifestations of the geothermal system are the geothermal water at temperatures of 25 °C and 31 °C obtained from the boreholes and hydrothermal alteration in Salar. Afyon volcanoclastics are reservoir rocks. Smectite and illite are the most important clay minerals in the hydrothermal alteration zones. The transformation from volcanic glass and alkali feldspar to smectite and illite reflects neutral-alkaline alteration conditions in felsic rocks. The clay minerals' stable isotopes (δ<sub>D</sub> and δ18O) indicate hypogene conditions. Discharge temperature, electrical conductivity and pH of Salar region geothermal waters vary from 25 to 31 °C, 320–357 µs/cm, and 6.8, respectively. The Salar geothermal waters are Ca-(Na)-HCO<sub>3</sub> type chemically. The electric resistivity models reveal shallow low resistivity (10 < ρ < 80 Ωm) layer related to the alluvium, Gebeceler formation, and Afyon volcanoclastics and deeper high resistivity (80 <ρ < 200 Ωm and ρ > 200 Ωm) layer based on Deresinek and Değirmendere formation respectively. The difference in electrical resistivity arises from the geothermal waters and hydrothermal alteration zones, influenced by the AAG tectonics.</p><p>The stable isotopes (δ<sub>D</sub> and δ18O) and alpha cristobalite geothermometer calculations indicate that the condition of the temperature in the active and fossil geothermal systems in the Salar does not change, and the condition of the temperature is between 44 °C and 112 °C.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524001573","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The intense investment demand in the geothermal sector in Afyonkarahisar province in recent years has enabled the utilization of geothermal waters such as district heating and greenhouse heating, electricity generation, and spa facilities and accelerated the exploration of new geothermal areas in the region. In this study, the Salar (Afyonkarahisar) region's geothermal potential was investigated using the mineralogy and geochemistry of hydrothermal alteration, hydrogeochemistry, and resistivity models obtained from magnetotelluric data. The Salar region is located within the Afyon-Akşehir Graben (AAG) and 10 km south of Afyonkarahisar province. The most important manifestations of the geothermal system are the geothermal water at temperatures of 25 °C and 31 °C obtained from the boreholes and hydrothermal alteration in Salar. Afyon volcanoclastics are reservoir rocks. Smectite and illite are the most important clay minerals in the hydrothermal alteration zones. The transformation from volcanic glass and alkali feldspar to smectite and illite reflects neutral-alkaline alteration conditions in felsic rocks. The clay minerals' stable isotopes (δD and δ18O) indicate hypogene conditions. Discharge temperature, electrical conductivity and pH of Salar region geothermal waters vary from 25 to 31 °C, 320–357 µs/cm, and 6.8, respectively. The Salar geothermal waters are Ca-(Na)-HCO3 type chemically. The electric resistivity models reveal shallow low resistivity (10 < ρ < 80 Ωm) layer related to the alluvium, Gebeceler formation, and Afyon volcanoclastics and deeper high resistivity (80 <ρ < 200 Ωm and ρ > 200 Ωm) layer based on Deresinek and Değirmendere formation respectively. The difference in electrical resistivity arises from the geothermal waters and hydrothermal alteration zones, influenced by the AAG tectonics.
The stable isotopes (δD and δ18O) and alpha cristobalite geothermometer calculations indicate that the condition of the temperature in the active and fossil geothermal systems in the Salar does not change, and the condition of the temperature is between 44 °C and 112 °C.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.