Performance of high capacity socketed H-piles with long rock socket

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Arthur K.O. So
{"title":"Performance of high capacity socketed H-piles with long rock socket","authors":"Arthur K.O. So","doi":"10.1016/j.sandf.2024.101481","DOIUrl":null,"url":null,"abstract":"<div><p>The pile capacity is commonly calculated by the engineers as the lesser of its structural capacity and the ultimate resistance of ground supporting it using a generalized equation irrespective of the shaft type, socket diameter, socket length, rock type and grout strength. This equation may be over-simplified and risky if the pile/grout/rock interaction is not considered. Based on the loading tests of 6 instrumented socketed piles with 4–6 m rock socket by others and 35 non-instrumented socketed H-piles with 5–34 m rock socket by the author, the load-transfer mechanism in long rock socket is found dependent not only on the mobilization of shear resistance in soil and rock layers, but also largely on the steel/grout bond behavior. A side resistance distribution factor α<sub>s</sub> is introduced as a simple and practical index to represent the load-transfer mechanism along the pile shaft and to the socket. It would increase with an increase in loading and pile length in soils, but decrease with an increase in socket length indicating that critical socket length does exist which is likely depending on the grout bond strength. Average bond stress reduces with increased socket length when the critical socket length is exceeded. Residual settlement is largely due to the slip and bond failure at the interface. Creep settlement is largely affected by the properties of grout mix and tends to increase with increased socket length.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 4","pages":"Article 101481"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000593/pdfft?md5=eb82393636865269cbeddb56927a5014&pid=1-s2.0-S0038080624000593-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624000593","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pile capacity is commonly calculated by the engineers as the lesser of its structural capacity and the ultimate resistance of ground supporting it using a generalized equation irrespective of the shaft type, socket diameter, socket length, rock type and grout strength. This equation may be over-simplified and risky if the pile/grout/rock interaction is not considered. Based on the loading tests of 6 instrumented socketed piles with 4–6 m rock socket by others and 35 non-instrumented socketed H-piles with 5–34 m rock socket by the author, the load-transfer mechanism in long rock socket is found dependent not only on the mobilization of shear resistance in soil and rock layers, but also largely on the steel/grout bond behavior. A side resistance distribution factor αs is introduced as a simple and practical index to represent the load-transfer mechanism along the pile shaft and to the socket. It would increase with an increase in loading and pile length in soils, but decrease with an increase in socket length indicating that critical socket length does exist which is likely depending on the grout bond strength. Average bond stress reduces with increased socket length when the critical socket length is exceeded. Residual settlement is largely due to the slip and bond failure at the interface. Creep settlement is largely affected by the properties of grout mix and tends to increase with increased socket length.

带长嵌岩的高承载力嵌岩工字桩的性能
工程师通常使用一个通用公式来计算桩的承载力,即桩的结构承载力与支撑桩的地层极限阻力中较小的数值,而与轴类型、承插口直径、承插口长度、岩石类型和灌浆强度无关。如果不考虑桩、灌浆料和岩石之间的相互作用,这个公式可能会过于简化,而且存在风险。根据他人对 6 根 4-6 米承插岩层的仪器承插桩和笔者对 35 根 5-34 米承插岩层的非仪器承插 H 型桩进行的加载试验,发现长承插岩层的荷载传递机制不仅取决于土层和岩层的抗剪能力,还在很大程度上取决于钢筋/灌浆的粘结行为。我们引入了侧阻力分布系数 αs 作为一个简单实用的指标,来表示沿桩轴和承插口的荷载传递机制。在土壤中,该系数会随着荷载和桩长的增加而增加,但会随着承台长度的增加而减少,这表明临界承台长度确实存在,这可能取决于灌浆粘结强度。当超过临界承台长度时,平均粘结应力会随着承台长度的增加而减小。残余沉降主要是由于界面处的滑移和粘结失效造成的。蠕变沉降主要受灌浆混合料特性的影响,并随着承插口长度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信