Ming Meng , Yiming Liu , Yun Shan , Yi Song , Jian Li , Yang Shao , Lizhe Liu
{"title":"Asymmetric distortion of orbital hybridization at halogen-doped IrO2 monolayers for acidic water electrolysis","authors":"Ming Meng , Yiming Liu , Yun Shan , Yi Song , Jian Li , Yang Shao , Lizhe Liu","doi":"10.1016/j.susc.2024.122542","DOIUrl":null,"url":null,"abstract":"<div><p>The unsatisfactory reactive activity and structural stability in acidic oxygen evolution reaction (OER) have been the main bottleneck in exploiting hydrogen energy from water splitting. Herein, we suggest a halogen (H)-doping strategy in 1T phase iridium dioxide (IrO<sub>2</sub>) monolayer to optimize its electronic structure for accelerating the reaction kinetics process, in which the bonding interaction difference between Ir-H and Ir-O bonds causes an electronic reconfiguration through asymmetric orbital hybridization. The doped F elements with a lower valence state make more valence electrons revert to the Ir-5d orbitals to reduce the activation energy, leading to a higher catalytic activity. In addition, a stronger bonding interaction at Ir-F bonds also can lead to a higher structural stability. However, this advantage cannot occur at Cl-doped or Br-doped IrO<sub>2</sub> monolayer. This work provides a new insight into designing new-type catalysts for acidic OER.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122542"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000931","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The unsatisfactory reactive activity and structural stability in acidic oxygen evolution reaction (OER) have been the main bottleneck in exploiting hydrogen energy from water splitting. Herein, we suggest a halogen (H)-doping strategy in 1T phase iridium dioxide (IrO2) monolayer to optimize its electronic structure for accelerating the reaction kinetics process, in which the bonding interaction difference between Ir-H and Ir-O bonds causes an electronic reconfiguration through asymmetric orbital hybridization. The doped F elements with a lower valence state make more valence electrons revert to the Ir-5d orbitals to reduce the activation energy, leading to a higher catalytic activity. In addition, a stronger bonding interaction at Ir-F bonds also can lead to a higher structural stability. However, this advantage cannot occur at Cl-doped or Br-doped IrO2 monolayer. This work provides a new insight into designing new-type catalysts for acidic OER.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.