{"title":"Probability density of the solution to nonlinear systems driven by Gaussian and Poisson white noises","authors":"Wantao Jia , Zhe Jiao , Wanrong Zan , Weiqiu Zhu","doi":"10.1016/j.probengmech.2024.103658","DOIUrl":null,"url":null,"abstract":"<div><p>A new method is proposed to compute the probability density of the multi-dimensional nonlinear dynamical system perturbed by a combined excitation of Gaussian and Poisson white noises. We first deduce a probability-density solver from the Euler–Maruyama scheme of the stochastic system and the corresponding Chapman–Kolmogorov equation. This solver actually is an explicit numerical formula of the probability density of the solution to this stochastic system. To compute the probability density, we propose an efficient algorithm for this solver, which actually is the implementation of a numerical integration. Furthermore, we prove this solver is an approximated solution of the corresponding forward Kolmogorov equation. Numerical examples are conducted to illustrate our probability-density solver.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"77 ","pages":"Article 103658"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000808","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A new method is proposed to compute the probability density of the multi-dimensional nonlinear dynamical system perturbed by a combined excitation of Gaussian and Poisson white noises. We first deduce a probability-density solver from the Euler–Maruyama scheme of the stochastic system and the corresponding Chapman–Kolmogorov equation. This solver actually is an explicit numerical formula of the probability density of the solution to this stochastic system. To compute the probability density, we propose an efficient algorithm for this solver, which actually is the implementation of a numerical integration. Furthermore, we prove this solver is an approximated solution of the corresponding forward Kolmogorov equation. Numerical examples are conducted to illustrate our probability-density solver.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.