Hyeon Ki Jeong , Christine Park , Simon W. Jiang , Matilda Nicholas , Suephy Chen , Ricardo Henao , Meenal Kheterpal
{"title":"Image Quality Assessment Using Convolutional Neural Network in Clinical Skin Images","authors":"Hyeon Ki Jeong , Christine Park , Simon W. Jiang , Matilda Nicholas , Suephy Chen , Ricardo Henao , Meenal Kheterpal","doi":"10.1016/j.xjidi.2024.100285","DOIUrl":null,"url":null,"abstract":"<div><p>The image quality received for clinical evaluation is often suboptimal. The goal is to develop an image quality analysis tool to assess patient- and primary care physician–derived images using deep learning model. Dataset included patient- and primary care physician–derived images from August 21, 2018 to June 30, 2022 with 4 unique quality labels. VGG16 model was fine tuned with input data, and optimal threshold was determined by Youden’s index. Ordinal labels were transformed to binary labels using a majority vote because model distinguishes between 2 categories (good vs bad). At a threshold of 0.587, area under the curve for the test set was 0.885 (95% confidence interval = 0.838–0.933); sensitivity, specificity, positive predictive value, and negative predictive value were 0.829, 0.784, 0.906, and 0.645, respectively. Independent validation of 300 additional images (from patients and primary care physicians) demonstrated area under the curve of 0.864 (95% confidence interval = 0.818–0.909) and area under the curve of 0.902 (95% confidence interval = 0.85–0.95), respectively. The sensitivity, specificity, positive predictive value, and negative predictive value for the 300 images were 0.827, 0.800, 0.959, and 0.450, respectively. We demonstrate a practical approach improving the image quality for clinical workflow. Although users may have to capture additional images, this is offset by the improved workload and efficiency for clinical teams.</p></div>","PeriodicalId":73548,"journal":{"name":"JID innovations : skin science from molecules to population health","volume":"4 4","pages":"Article 100285"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667026724000328/pdfft?md5=3096c45a51c4538d05749966b424a85b&pid=1-s2.0-S2667026724000328-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JID innovations : skin science from molecules to population health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667026724000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The image quality received for clinical evaluation is often suboptimal. The goal is to develop an image quality analysis tool to assess patient- and primary care physician–derived images using deep learning model. Dataset included patient- and primary care physician–derived images from August 21, 2018 to June 30, 2022 with 4 unique quality labels. VGG16 model was fine tuned with input data, and optimal threshold was determined by Youden’s index. Ordinal labels were transformed to binary labels using a majority vote because model distinguishes between 2 categories (good vs bad). At a threshold of 0.587, area under the curve for the test set was 0.885 (95% confidence interval = 0.838–0.933); sensitivity, specificity, positive predictive value, and negative predictive value were 0.829, 0.784, 0.906, and 0.645, respectively. Independent validation of 300 additional images (from patients and primary care physicians) demonstrated area under the curve of 0.864 (95% confidence interval = 0.818–0.909) and area under the curve of 0.902 (95% confidence interval = 0.85–0.95), respectively. The sensitivity, specificity, positive predictive value, and negative predictive value for the 300 images were 0.827, 0.800, 0.959, and 0.450, respectively. We demonstrate a practical approach improving the image quality for clinical workflow. Although users may have to capture additional images, this is offset by the improved workload and efficiency for clinical teams.