Alleviated mechanical structure decay and accelerated transport kinetics via KNCHCF@NiHCF core–shell structure for aqueous potassium-ion batteries

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen Huang , Wenwei Zhang , Yunshu Zeng , Feiyang Chao , Ran Chen , Shijie Dong , Songdong Yuan , Ping Luo
{"title":"Alleviated mechanical structure decay and accelerated transport kinetics via KNCHCF@NiHCF core–shell structure for aqueous potassium-ion batteries","authors":"Zhen Huang ,&nbsp;Wenwei Zhang ,&nbsp;Yunshu Zeng ,&nbsp;Feiyang Chao ,&nbsp;Ran Chen ,&nbsp;Shijie Dong ,&nbsp;Songdong Yuan ,&nbsp;Ping Luo","doi":"10.1016/j.mtnano.2024.100495","DOIUrl":null,"url":null,"abstract":"<div><p>The sluggish ion transport and mechanical decay caused by K<sup>+</sup> intercalation can hinder the K<sup>+</sup> storage ability of Prussian blue analogs (PBAs), potential cathode materials for potassium-ion batteries (PIBs). The construction of composite materials using adjustable chemical components of PB is an effective method to improve cycling stability. In this study, a core–shell structure of KNiCoFe(CN)<sub>6</sub>@NiFe(CN)<sub>6</sub> (KNCHCF@NiHCF) was prepared to utilize the inertness of Ni<sup>2+</sup> and the stability of Fe–C<img>N–Ni bonds and enhance the performance of PBAs. Different concentrations of NiHCF coating (Ni-0, Ni-2, Ni-5, and Ni-60) were introduced into the outer layer of KNCHCF using a simple solution precipitation method. The aforementioned core–shell structure and the corresponding built-in electric field enhanced the structural stability and K<sup>+</sup>/e<sup>−</sup> transport kinetics of the fabricated materials. And Ni-5 exhibited the best electrochemical performance with excellent durable cycling stability and rate performance. Furthermore, the reversible single-phase insertion and extraction reaction of K<sup>+</sup> storage mechanism within the Ni-5 cathode was revealed using ex-/in-situ characterization techniques. This strategy may facilitate the development of other cathode materials for rechargeable metal ion batteries.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"27 ","pages":"Article 100495"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000452","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The sluggish ion transport and mechanical decay caused by K+ intercalation can hinder the K+ storage ability of Prussian blue analogs (PBAs), potential cathode materials for potassium-ion batteries (PIBs). The construction of composite materials using adjustable chemical components of PB is an effective method to improve cycling stability. In this study, a core–shell structure of KNiCoFe(CN)6@NiFe(CN)6 (KNCHCF@NiHCF) was prepared to utilize the inertness of Ni2+ and the stability of Fe–CN–Ni bonds and enhance the performance of PBAs. Different concentrations of NiHCF coating (Ni-0, Ni-2, Ni-5, and Ni-60) were introduced into the outer layer of KNCHCF using a simple solution precipitation method. The aforementioned core–shell structure and the corresponding built-in electric field enhanced the structural stability and K+/e transport kinetics of the fabricated materials. And Ni-5 exhibited the best electrochemical performance with excellent durable cycling stability and rate performance. Furthermore, the reversible single-phase insertion and extraction reaction of K+ storage mechanism within the Ni-5 cathode was revealed using ex-/in-situ characterization techniques. This strategy may facilitate the development of other cathode materials for rechargeable metal ion batteries.

通过 KNCHCF@NiHCF 核壳结构缓解水溶液钾离子电池的机械结构衰减并加速传输动力学
钾离子电池(PIB)的潜在阴极材料普鲁士蓝类似物(PBAs)的离子传输迟缓和插层引起的机械衰变会阻碍其储存钾离子的能力。利用可调节的普鲁士蓝化学成分构建复合材料是提高循环稳定性的有效方法。本研究制备了 KNiCoFe(CN)6@NiFe(CN)6(KNCHCF@NiHCF)的核壳结构,以利用 Ni2+ 的惰性和 Fe-CN-Ni 键的稳定性提高 PBA 的性能。采用简单的溶液沉淀法将不同浓度的 NiHCF 涂层(Ni-0、Ni-2、Ni-5 和 Ni-60)引入 KNCHCF 的外层。上述核壳结构和相应的内置电场增强了制备材料的结构稳定性和 K+/e- 传输动力学。其中,Ni-5 的电化学性能最佳,具有出色的持久循环稳定性和速率性能。此外,利用原位/离位表征技术还揭示了 Ni-5 阴极内 K+ 储存机制的可逆单相插入和提取反应。这一策略可促进其他可充电金属离子电池阴极材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信