{"title":"Rational design and efficient synthesis of cyclic polymers with visualized molecular topology and unique dielectric properties","authors":"Hao Wang, Qiubo Wang, Xiaojuan Liao, Ruyi Sun, Meiran Xie","doi":"10.1016/j.reactfunctpolym.2024.105995","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclic polymers without chain ends have attracted increasing attention because of the unique physical properties. However, the direct visualization of cyclic topology remains a formidable challenge, because the cyclic chains with flexible backbone or strong intramolecular interaction usually existed in a coiled state rather than cyclic topology. Herein, monocyclic and bicyclic polymers were prepared via blocking-cyclization technique, and the molecular topology of cyclic polymer containing phenyl pendant was directly observed depending on the reduced intrachain entanglement. The structure and characteristics of cyclic polymers were investigated, and the difference between cyclic polymer and linear counterpart was demonstrated. Compared to linear polymer, cyclic polymer exhibited improved dielectric properties, and bicyclic polymer displayed further increased dielectric constant and energy storage density than monocyclic polymer possessing the same repeating units. Therefore, this research presents a facile strategy in the design and construction of cyclic polymers with directly visualized topology and unique dielectric properties.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"202 ","pages":"Article 105995"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824001706","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclic polymers without chain ends have attracted increasing attention because of the unique physical properties. However, the direct visualization of cyclic topology remains a formidable challenge, because the cyclic chains with flexible backbone or strong intramolecular interaction usually existed in a coiled state rather than cyclic topology. Herein, monocyclic and bicyclic polymers were prepared via blocking-cyclization technique, and the molecular topology of cyclic polymer containing phenyl pendant was directly observed depending on the reduced intrachain entanglement. The structure and characteristics of cyclic polymers were investigated, and the difference between cyclic polymer and linear counterpart was demonstrated. Compared to linear polymer, cyclic polymer exhibited improved dielectric properties, and bicyclic polymer displayed further increased dielectric constant and energy storage density than monocyclic polymer possessing the same repeating units. Therefore, this research presents a facile strategy in the design and construction of cyclic polymers with directly visualized topology and unique dielectric properties.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.