Guang-Yang Gou , Changhua You , Pan Yao , Yu-Sen Guo , Tie-Zhu Liu , Zi-Xuan Song , Ben-Yuan He , MingHui Yin , Xuan Zhang , Chunxiu Liu , Jun Zhou , Xuan Sun , Chengyu Zhuang , Yuan-Dong Gu , Lei Yao , Ning Xue , Ming Zhao
{"title":"A 16-channel Si probe monolithically integrated with CMOS chips for neural recording","authors":"Guang-Yang Gou , Changhua You , Pan Yao , Yu-Sen Guo , Tie-Zhu Liu , Zi-Xuan Song , Ben-Yuan He , MingHui Yin , Xuan Zhang , Chunxiu Liu , Jun Zhou , Xuan Sun , Chengyu Zhuang , Yuan-Dong Gu , Lei Yao , Ning Xue , Ming Zhao","doi":"10.1016/j.snr.2024.100206","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-channel neural electrodes as a crucial means are of great significance for information exchange between the brain and computers. Herein, we present a 16-channel Si-based active neural probe system that achieves a monolithic integration between the electrodes and circuits in a single probe, making it a standalone integrated electrophysiology recording system. The ASIC prepared on a base (<span><math><mrow><mn>2</mn><mspace></mspace><mo>×</mo><mspace></mspace><mn>2</mn><mspace></mspace><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>) is a 16-channel analog frontend (AFE) for neural recording, and each channel has a low-noise amplifier (LNA), a bandpass filter (BPF), a buffer and a current bias circuit. The 258 neural signal recording electrodes (<span><math><mrow><mn>22</mn><mspace></mspace><mo>×</mo><mspace></mspace><mn>24</mn><mspace></mspace><mi>μ</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>) are densely packed on a 50 μm thick, 100 μm wide, and 3 mm long shank. The ASIC of neural probe, internal interconnecting wires are all implemented in commercial SMIC 0.18 μm CMOS technology. The neural probe system achieves a 3.6 μV<sub>rms</sub> input-referred noise (IRN) in a bandwidth of 1.1Hz-10 kHz, 70.8 μW power consumption, 0.0785 mm<sup>2</sup> area per channel, as well as an AFE gain of 58.1 dB Furthermore, the impedances of the Au electrodes can be obtained as 0.5–2.1 MΩ at a frequency of 1 kHz. The functionality of a 16-channel silicon-based neural probe is validated in an in-vivo experiment on lab rats.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100206"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000225/pdfft?md5=c1e13733680810a35fc396ccb92755a3&pid=1-s2.0-S2666053924000225-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-channel neural electrodes as a crucial means are of great significance for information exchange between the brain and computers. Herein, we present a 16-channel Si-based active neural probe system that achieves a monolithic integration between the electrodes and circuits in a single probe, making it a standalone integrated electrophysiology recording system. The ASIC prepared on a base () is a 16-channel analog frontend (AFE) for neural recording, and each channel has a low-noise amplifier (LNA), a bandpass filter (BPF), a buffer and a current bias circuit. The 258 neural signal recording electrodes () are densely packed on a 50 μm thick, 100 μm wide, and 3 mm long shank. The ASIC of neural probe, internal interconnecting wires are all implemented in commercial SMIC 0.18 μm CMOS technology. The neural probe system achieves a 3.6 μVrms input-referred noise (IRN) in a bandwidth of 1.1Hz-10 kHz, 70.8 μW power consumption, 0.0785 mm2 area per channel, as well as an AFE gain of 58.1 dB Furthermore, the impedances of the Au electrodes can be obtained as 0.5–2.1 MΩ at a frequency of 1 kHz. The functionality of a 16-channel silicon-based neural probe is validated in an in-vivo experiment on lab rats.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.