In situ monitoring of cycling characteristics in lithium-ion battery based on a two-cavity cascade fiber-optic Fabry-Perot interferometer

Ke Tan , Hongyu Liu , Xiaoshuang Dai, Zhiyuan Li, Xingyu Li, Weirong Gan, Junfeng Jiang, Tiegen Liu, Shuang Wang
{"title":"In situ monitoring of cycling characteristics in lithium-ion battery based on a two-cavity cascade fiber-optic Fabry-Perot interferometer","authors":"Ke Tan ,&nbsp;Hongyu Liu ,&nbsp;Xiaoshuang Dai,&nbsp;Zhiyuan Li,&nbsp;Xingyu Li,&nbsp;Weirong Gan,&nbsp;Junfeng Jiang,&nbsp;Tiegen Liu,&nbsp;Shuang Wang","doi":"10.1016/j.meaene.2024.100011","DOIUrl":null,"url":null,"abstract":"<div><p>The state characterization inside the lithium-ion battery during charge/discharge cycling is extremely crucial for understanding the electrochemical reaction mechanism. However, current methods exhibit a challenge to overcome the specific battery environment obstacles, including strong redox properties, strong electromagnetic interference, and fast reaction processes. Hence, more efforts are still needed to monitor the actual state inside the battery accurately and reliably. To address this issue, we designed and developed a compact two-cavity cascade fiber-optic Fabry-Perot interferometer (FPI) sensor that can be safely implanted in batteries to measure internal temperature and pressure simultaneously. With its high pressure and temperature sensitivity of 26.6 ​nm/kPa and 107 ​nm/°C, this sensor exhibits an ultra-low cross-sensitivity of −40 ​Pa/°C. During charge/discharge cycling tests, regular cyclic pressure and temperature signals are obtained at various rates cycling in real-time and in situ, revealing details about the actual state characterization inside the battery. From the experiment results, the pressure inside the battery is divided into reversible changes caused by respiration effects and irreversible changes caused by trace gas production. Furthermore, the FPI sensor provides a more precise temperature than thermocouples that measure the surface temperature of the battery, reflecting the internal/external temperature difference to a maximum of 3.5 ​°C at 1 ​C rate cycling. This operando FPI sensor provides a valuable technological tool for battery performance testing and safety monitoring.</p></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"3 ","pages":"Article 100011"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950345024000113/pdfft?md5=f428af0b477bb1579a52423d8bafa378&pid=1-s2.0-S2950345024000113-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The state characterization inside the lithium-ion battery during charge/discharge cycling is extremely crucial for understanding the electrochemical reaction mechanism. However, current methods exhibit a challenge to overcome the specific battery environment obstacles, including strong redox properties, strong electromagnetic interference, and fast reaction processes. Hence, more efforts are still needed to monitor the actual state inside the battery accurately and reliably. To address this issue, we designed and developed a compact two-cavity cascade fiber-optic Fabry-Perot interferometer (FPI) sensor that can be safely implanted in batteries to measure internal temperature and pressure simultaneously. With its high pressure and temperature sensitivity of 26.6 ​nm/kPa and 107 ​nm/°C, this sensor exhibits an ultra-low cross-sensitivity of −40 ​Pa/°C. During charge/discharge cycling tests, regular cyclic pressure and temperature signals are obtained at various rates cycling in real-time and in situ, revealing details about the actual state characterization inside the battery. From the experiment results, the pressure inside the battery is divided into reversible changes caused by respiration effects and irreversible changes caused by trace gas production. Furthermore, the FPI sensor provides a more precise temperature than thermocouples that measure the surface temperature of the battery, reflecting the internal/external temperature difference to a maximum of 3.5 ​°C at 1 ​C rate cycling. This operando FPI sensor provides a valuable technological tool for battery performance testing and safety monitoring.

基于双腔级联光纤法布里-珀罗干涉仪的锂离子电池循环特性原位监测系统
锂离子电池在充放电循环过程中的状态表征对于理解电化学反应机制极为重要。然而,目前的方法在克服特定电池环境障碍方面存在挑战,包括强氧化还原特性、强电磁干扰和快速反应过程。因此,要想准确可靠地监测电池内部的实际状态,仍需付出更多努力。针对这一问题,我们设计并开发了一种紧凑型双腔级联光纤法布里-珀罗干涉仪(FPI)传感器,可以安全地植入电池,同时测量内部温度和压力。该传感器的压力和温度灵敏度分别为 26.6 nm/kPa 和 107 nm/°C,具有 -40 Pa/°C 的超低交叉灵敏度。在充放电循环测试过程中,以各种速率循环实时和原位获取定期的循环压力和温度信号,从而揭示电池内部实际状态特征的详细信息。根据实验结果,电池内部的压力可分为由呼吸作用引起的可逆变化和由微量气体产生引起的不可逆变化。此外,与测量电池表面温度的热电偶相比,FPI 传感器能提供更精确的温度,在 1 摄氏度的循环速率下,能反映最大 3.5 摄氏度的内部/外部温差。这种操作型 FPI 传感器为电池性能测试和安全监控提供了宝贵的技术工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信