Manipulating the photophysical properties of multi-donor molecules for fast reverse intersystem crossing in solution-processed OLED devices

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hengwei Tian , Xuming Zhuang , Zhi-Ping Yan , Hai Bi , Zhiqiang Li , Yue Wang , Yanping Huo
{"title":"Manipulating the photophysical properties of multi-donor molecules for fast reverse intersystem crossing in solution-processed OLED devices","authors":"Hengwei Tian ,&nbsp;Xuming Zhuang ,&nbsp;Zhi-Ping Yan ,&nbsp;Hai Bi ,&nbsp;Zhiqiang Li ,&nbsp;Yue Wang ,&nbsp;Yanping Huo","doi":"10.1016/j.orgel.2024.107085","DOIUrl":null,"url":null,"abstract":"<div><p>The slow reverse intersystem crossing (RISC) rate in thermally activated delayed fluorescence (TADF) emitters result in extended exciton lifetime and pronounced efficiency loss at high luminance level. To address this limitation, we have developed and characterized a series of novel compounds featuring triazine cores substituted with <em>tert</em>-butyl carbazole moieties at various positions and quantities. The objective here is to fine-tune the charge transfer properties, thereby enhancing the efficiency of the RISC process. Our studies reveal that through-space charge transfer is more effective than long-range through-bond charge transfer in minimizing the singlet-triplet energy gap and accelerating RISC. The optimized compound, <strong>4tCzTrz</strong>, exhibits an exceptionally fast RISC rate of 1.02 × 10<sup>7</sup> s<sup>−1</sup> and a high photoluminescence quantum yield of up to 100 %. Solution-processed organic light-emitting diodes (OLEDs) incorporating this molecule have achieved outstanding maximum external quantum efficiencies of around 20 %, whether used as an emitter directly or as a sensitizer to boost overall emission efficiency.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156611992400096X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The slow reverse intersystem crossing (RISC) rate in thermally activated delayed fluorescence (TADF) emitters result in extended exciton lifetime and pronounced efficiency loss at high luminance level. To address this limitation, we have developed and characterized a series of novel compounds featuring triazine cores substituted with tert-butyl carbazole moieties at various positions and quantities. The objective here is to fine-tune the charge transfer properties, thereby enhancing the efficiency of the RISC process. Our studies reveal that through-space charge transfer is more effective than long-range through-bond charge transfer in minimizing the singlet-triplet energy gap and accelerating RISC. The optimized compound, 4tCzTrz, exhibits an exceptionally fast RISC rate of 1.02 × 107 s−1 and a high photoluminescence quantum yield of up to 100 %. Solution-processed organic light-emitting diodes (OLEDs) incorporating this molecule have achieved outstanding maximum external quantum efficiencies of around 20 %, whether used as an emitter directly or as a sensitizer to boost overall emission efficiency.

Abstract Image

操纵多供体分子的光物理性质,在溶液加工的有机发光二极管器件中实现快速反向系统间交叉
热激活延迟荧光(TADF)发射器的反向系统间交叉(RISC)速率较慢,导致激子寿命延长,在高亮度下效率明显下降。为了解决这一局限性,我们开发并鉴定了一系列新型化合物,其特点是三嗪核心在不同位置和数量上被叔丁基咔唑取代。我们的目标是对电荷转移特性进行微调,从而提高 RISC 过程的效率。我们的研究表明,在最小化单重-三重能隙和加速 RISC 过程方面,空间电荷转移比长程通键电荷转移更有效。优化后的化合物 4tCzTrz 的 RISC 速率高达 1.02 × 107 s-1,光量子产率高达 100%。含有这种分子的溶液加工有机发光二极管(OLED),无论是直接用作发射器,还是用作敏化剂以提高整体发射效率,都取得了出色的最大外部量子效率,约为 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信