Fluid-poroviscoelastic structure interaction problem with nonlinear geometric coupling

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jeffrey Kuan , Sunčica Čanić , Boris Muha
{"title":"Fluid-poroviscoelastic structure interaction problem with nonlinear geometric coupling","authors":"Jeffrey Kuan ,&nbsp;Sunčica Čanić ,&nbsp;Boris Muha","doi":"10.1016/j.matpur.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate weak solutions to a fluid-structure interaction (FSI) problem between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations, and a poroviscoelastic medium modeled by the Biot equations. These systems are coupled nonlinearly across an interface with mass and elastic energy, modeled by a reticular plate equation, which is transparent to fluid flow. We provide a constructive proof of the existence of a weak solution to a regularized problem. Next, a weak-classical consistency result is obtained, showing that the weak solution to the regularized problem converges, as the regularization parameter approaches zero, to a classical solution to the original problem, when such a classical solution exists. While the assumptions in the first step only require the Biot medium to be poroelastic, the second step requires additional regularity, namely, that the Biot medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem with nonlinear coupling involving a Biot model for poro(visco)elastic media.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000795/pdfft?md5=70a266602197156445762335b45ea2b2&pid=1-s2.0-S0021782424000795-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate weak solutions to a fluid-structure interaction (FSI) problem between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations, and a poroviscoelastic medium modeled by the Biot equations. These systems are coupled nonlinearly across an interface with mass and elastic energy, modeled by a reticular plate equation, which is transparent to fluid flow. We provide a constructive proof of the existence of a weak solution to a regularized problem. Next, a weak-classical consistency result is obtained, showing that the weak solution to the regularized problem converges, as the regularization parameter approaches zero, to a classical solution to the original problem, when such a classical solution exists. While the assumptions in the first step only require the Biot medium to be poroelastic, the second step requires additional regularity, namely, that the Biot medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem with nonlinear coupling involving a Biot model for poro(visco)elastic media.

具有非线性几何耦合的流体-多孔弹性结构相互作用问题
我们研究了以纳维-斯托克斯方程为模型的不可压缩粘性流体与以比奥特方程为模型的多孔弹性介质之间的流固耦合(FSI)问题的弱解。这些系统在一个具有质量和弹性能量的界面上非线性耦合,该界面由网状板方程模拟,对流体流动透明。我们提供了正则化问题弱解存在的构造性证明。接下来,我们得到了弱经典一致性结果,表明当正则化参数趋近于零时,正则化问题的弱解收敛于原始问题的经典解,如果存在这样的经典解的话。第一步的假设只要求 Biot 介质为孔弹性介质,而第二步则要求额外的正则性,即 Biot 介质为孔粘弹性介质。这是第一个涉及孔(粘)弹性介质的 Biot 模型的非线性耦合 FSI 问题的弱解存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信