On some congruences and exponential sums

IF 1.2 3区 数学 Q1 MATHEMATICS
Moubariz Z. Garaev , Igor E. Shparlinski
{"title":"On some congruences and exponential sums","authors":"Moubariz Z. Garaev ,&nbsp;Igor E. Shparlinski","doi":"10.1016/j.ffa.2024.102451","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> be a fixed small constant, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> be the finite field of <em>p</em> elements for prime <em>p</em>. We consider additive and multiplicative problems in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> that involve intervals and arbitrary sets. Representative examples of our results are as follows. Let <span><math><mi>M</mi></math></span> be an arbitrary subset of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. If <span><math><mi>#</mi><mi>M</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> and <span><math><mi>H</mi><mo>⩾</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> or if <span><math><mi>#</mi><mi>M</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>5</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> and <span><math><mi>H</mi><mo>⩾</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>5</mn><mo>+</mo><mi>ε</mi></mrow></msup></math></span> then all, but <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span> elements of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> can be represented in the form <em>hm</em> with <span><math><mi>h</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>H</mi><mo>]</mo></math></span> and <span><math><mi>m</mi><mo>∈</mo><mi>M</mi></math></span>, where <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> depends only on <em>ε</em>. Furthermore, let <span><math><mi>X</mi></math></span> be an arbitrary interval of length <em>H</em> and <em>s</em> be a fixed positive integer. If<span><span><span><math><mi>H</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>17</mn><mo>/</mo><mn>35</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>#</mi><mi>M</mi><mo>&gt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>17</mn><mo>/</mo><mn>35</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>,</mo></math></span></span></span> then the number <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> of solutions to the congruence<span><span><span><math><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>6</mn></mrow><mrow><mi>s</mi></mrow></msubsup></mrow></mfrac><mo>≡</mo><mi>λ</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>M</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>X</mi><mo>,</mo><mspace></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>6</mn><mo>,</mo></math></span></span></span> satisfies<span><span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mfrac><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>6</mn></mrow></msup><msup><mrow><mo>(</mo><mi>#</mi><mi>M</mi><mo>)</mo></mrow><mrow><mn>6</mn></mrow></msup></mrow><mrow><mi>p</mi></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mi>δ</mi></mrow></msup><mo>)</mo><mo>)</mo></mrow><mo>.</mo></math></span></span></span></p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S107157972400090X/pdfft?md5=73d751bad88083ca796c715f3b4d9bad&pid=1-s2.0-S107157972400090X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972400090X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ε>0 be a fixed small constant, Fp be the finite field of p elements for prime p. We consider additive and multiplicative problems in Fp that involve intervals and arbitrary sets. Representative examples of our results are as follows. Let M be an arbitrary subset of Fp. If #M>p1/3+ε and Hp2/3 or if #M>p3/5+ε and Hp3/5+ε then all, but O(p1δ) elements of Fp can be represented in the form hm with h[1,H] and mM, where δ>0 depends only on ε. Furthermore, let X be an arbitrary interval of length H and s be a fixed positive integer. IfH>p17/35+ε,#M>p17/35+ε, then the number T6(λ) of solutions to the congruencem1x1s+m2x2s+m3x3s+m4x4s+m5x5s+m6x6sλmodp,miM,xiX,i=1,,6, satisfiesT6(λ)=H6(#M)6p(1+O(pδ)).

关于一些全等和指数和
让 ε>0 是一个固定的小常数,Fp 是素数 p 的 p 元素有限域。我们考虑 Fp 中涉及区间和任意集合的加法和乘法问题。我们的代表性结果举例如下。设 M 是 Fp 的任意子集。如果 #M>p1/3+ε 和 H⩾p2/3,或者如果 #M>p3/5+ε 和 H⩾p3/5+ε,那么除了 O(p1-δ)个元素外,Fp 的所有元素都可以用 hm 的形式表示,其中 h∈[1,H],m∈M,δ>0 只取决于 ε。此外,设 X 是长度为 H 的任意区间,s 是一个固定的正整数。若 H>p17/35+ε,#M>p17/35+ε,则全等m1x1s+m2x2s+m3x3s+m4x4s+m5x5s+m6x6s≡λmodp,mi∈M,xi∈X,i=1,...,6 的解的个数 T6(λ)满足T6(λ)=H6(#M)6p(1+O(p-δ))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信