Well-posedness and inverse problems for semilinear nonlocal wave equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi-Hsuan Lin , Teemu Tyni , Philipp Zimmermann
{"title":"Well-posedness and inverse problems for semilinear nonlocal wave equations","authors":"Yi-Hsuan Lin ,&nbsp;Teemu Tyni ,&nbsp;Philipp Zimmermann","doi":"10.1016/j.na.2024.113601","DOIUrl":null,"url":null,"abstract":"<div><p>This article is devoted to forward and inverse problems associated with time-independent semilinear nonlocal wave equations. We first establish comprehensive well-posedness results for some semilinear nonlocal wave equations. The main challenge is due to the low regularity of the solutions of linear nonlocal wave equations. We then turn to an inverse problem of recovering the nonlinearity of the equation. More precisely, we show that the exterior Dirichlet-to-Neumann map uniquely determines homogeneous nonlinearities of the form <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> under certain growth conditions. On the other hand, we also prove that initial data can be determined by using passive measurements under certain nonlinearity conditions. The main tools used for the inverse problem are the unique continuation principle of the fractional Laplacian and a Runge approximation property. The results hold for any spatial dimension <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001202/pdfft?md5=514b86014fbe067975460c2eb5bc96b4&pid=1-s2.0-S0362546X24001202-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001202","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to forward and inverse problems associated with time-independent semilinear nonlocal wave equations. We first establish comprehensive well-posedness results for some semilinear nonlocal wave equations. The main challenge is due to the low regularity of the solutions of linear nonlocal wave equations. We then turn to an inverse problem of recovering the nonlinearity of the equation. More precisely, we show that the exterior Dirichlet-to-Neumann map uniquely determines homogeneous nonlinearities of the form f(x,u) under certain growth conditions. On the other hand, we also prove that initial data can be determined by using passive measurements under certain nonlinearity conditions. The main tools used for the inverse problem are the unique continuation principle of the fractional Laplacian and a Runge approximation property. The results hold for any spatial dimension nN.

半线性非局部波方程的好求和逆问题
本文主要讨论与时间无关的半线性非局部波方程相关的正演和反演问题。我们首先为一些半线性非局部波方程建立了全面的好求解结果。主要挑战在于线性非局部波方程解的低正则性。然后,我们转向恢复方程非线性的逆问题。更准确地说,我们证明了在某些增长条件下,外部 Dirichlet 到 Neumann 映射唯一确定了 f(x,u) 形式的同质非线性。另一方面,我们还证明了在某些非线性条件下,可以通过被动测量来确定初始数据。逆问题的主要工具是分数拉普拉奇的唯一延续原理和 Runge 近似特性。这些结果适用于任何空间维度 n∈N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信