In-situ electrochemical conversion of V2O3@C into Zn3(OH)2V2O7·2H2O@C for high-performance aqueous Zn-ion batteries

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Cong Gao , Wei Sun , Weitong Zhang , Qiao Zhang , Shanyi Guang , Qianjin Chen
{"title":"In-situ electrochemical conversion of V2O3@C into Zn3(OH)2V2O7·2H2O@C for high-performance aqueous Zn-ion batteries","authors":"Cong Gao ,&nbsp;Wei Sun ,&nbsp;Weitong Zhang ,&nbsp;Qiao Zhang ,&nbsp;Shanyi Guang ,&nbsp;Qianjin Chen","doi":"10.1016/j.jpowsour.2024.234942","DOIUrl":null,"url":null,"abstract":"<div><p>Open-framework crystal structured vanadates have been extensively investigated as cathode materials for aqueous zinc-ion batteries (ZIBs). However, the inherent challenges of poor electronic conductivity and structural instability compromise the rate capability and overall cycle life. Herein, we first successfully synthesized octahedral MIL-101(V) and prepared the Zn<sub>3</sub>(OH)<sub>2</sub>V<sub>2</sub>O<sub>7</sub>·2H<sub>2</sub>O@C (ZVOH@C) composite by in-situ electrochemical conversion of MIL-101(V)-derived crystalline V<sub>2</sub>O<sub>3</sub> and carbon composite (V<sub>2</sub>O<sub>3</sub>@C). The ZVOH@C composite of open-framework crystal structured Zn<sub>3</sub>(OH)<sub>2</sub>V<sub>2</sub>O<sub>7</sub>·2H<sub>2</sub>O and conductive carbon skeleton not only possesses more active sites, more stable crystal structure and higher electrical conductivity, but also provides faster Zn<sup>2+</sup> diffusion kinetics. As expected, the ZVOH@C composite electrode exhibits excellent capacity of 506.3 mAh/g at a current density of 1.0 A/g, exceptional rate performance (375.7 mAh/g at 20.0 A/g), and impressive long-term cycling stability, maintaining 314.5 mAh/g over 5000 cycles at 20.0 A/g. This study demonstrates a promising method for designing new cathode materials through in-situ electrochemical synthesis for ZIBs.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324008942","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Open-framework crystal structured vanadates have been extensively investigated as cathode materials for aqueous zinc-ion batteries (ZIBs). However, the inherent challenges of poor electronic conductivity and structural instability compromise the rate capability and overall cycle life. Herein, we first successfully synthesized octahedral MIL-101(V) and prepared the Zn3(OH)2V2O7·2H2O@C (ZVOH@C) composite by in-situ electrochemical conversion of MIL-101(V)-derived crystalline V2O3 and carbon composite (V2O3@C). The ZVOH@C composite of open-framework crystal structured Zn3(OH)2V2O7·2H2O and conductive carbon skeleton not only possesses more active sites, more stable crystal structure and higher electrical conductivity, but also provides faster Zn2+ diffusion kinetics. As expected, the ZVOH@C composite electrode exhibits excellent capacity of 506.3 mAh/g at a current density of 1.0 A/g, exceptional rate performance (375.7 mAh/g at 20.0 A/g), and impressive long-term cycling stability, maintaining 314.5 mAh/g over 5000 cycles at 20.0 A/g. This study demonstrates a promising method for designing new cathode materials through in-situ electrochemical synthesis for ZIBs.

将 V2O3@C 原位电化学转化为 Zn3(OH)2V2O7-2H2O@C 以制造高性能水性 Zn 离子电池
作为水性锌离子电池(ZIB)的阴极材料,开框架晶体结构的钒酸盐已被广泛研究。然而,电子传导性差和结构不稳定等固有难题影响了电池的速率能力和整体循环寿命。在此,我们首次成功合成了八面体 MIL-101(V),并通过原位电化学转化 MIL-101(V) 衍生的结晶 V2O3 和碳复合材料(V2O3@C)制备了 Zn3(OH)2V2O7-2H2O@C(ZVOH@C)复合材料。由开框架晶体结构 Zn3(OH)2V2O7-2H2O 和导电碳骨架组成的 ZVOH@C 复合材料不仅具有更多的活性位点、更稳定的晶体结构和更高的导电率,而且还能提供更快的 Zn2+ 扩散动力学。正如预期的那样,ZVOH@C 复合电极在电流密度为 1.0 A/g 时显示出 506.3 mAh/g 的出色容量、优异的速率性能(20.0 A/g 时为 375.7 mAh/g)以及令人印象深刻的长期循环稳定性,在 20.0 A/g 下循环 5000 次仍能保持 314.5 mAh/g。这项研究展示了通过原位电化学合成设计 ZIB 新型阴极材料的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信