{"title":"Representation of solutions to quadratic 2BSDEs with unbounded terminal values","authors":"Kon-Gun Kim, Mun-Chol Kim, Ho-Jin Hwang","doi":"10.1016/j.spl.2024.110191","DOIUrl":null,"url":null,"abstract":"<div><p>Second order backward stochastic differential equations (2BSDEs, for short) are one of useful tools in solving stochastic control problems with model uncertainty. In this paper, we prove a representation formula for quadratic 2BSDEs with an unbounded terminal value under a convex assumption on the generator. Because of the unboundedness of the terminal value, we are unable to use some fine properties of BMO martingales, which are often employed in the literature to deal with bounded solutions to quadratic backward stochastic differential equations. Instead, we utilize the <span><math><mi>θ</mi></math></span>-technique. We also prove an existence result under an additional assumption that the terminal value is of uniformly continuous.</p></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"213 ","pages":"Article 110191"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001603","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Second order backward stochastic differential equations (2BSDEs, for short) are one of useful tools in solving stochastic control problems with model uncertainty. In this paper, we prove a representation formula for quadratic 2BSDEs with an unbounded terminal value under a convex assumption on the generator. Because of the unboundedness of the terminal value, we are unable to use some fine properties of BMO martingales, which are often employed in the literature to deal with bounded solutions to quadratic backward stochastic differential equations. Instead, we utilize the -technique. We also prove an existence result under an additional assumption that the terminal value is of uniformly continuous.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.