Supersymmetric Quantum Mechanics on a noncommutative plane through the lens of deformation quantization

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Md. Rafsanjany Jim, S. Hasibul Hassan Chowdhury
{"title":"Supersymmetric Quantum Mechanics on a noncommutative plane through the lens of deformation quantization","authors":"Md. Rafsanjany Jim,&nbsp;S. Hasibul Hassan Chowdhury","doi":"10.1016/j.aop.2024.169718","DOIUrl":null,"url":null,"abstract":"<div><p>A gauge invariant mathematical formalism based on deformation quantization is outlined to model an <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span> supersymmetric system of a spin <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> charged particle placed in a nocommutative plane under the influence of a vertical uniform magnetic field. The noncommutative involutive algebra <span><math><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mo>[</mo><mi>ϑ</mi><mo>]</mo></mrow><mo>]</mo></mrow><mo>,</mo><msup><mrow><mo>∗</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></math></span> of formal power series in <span><math><mi>ϑ</mi></math></span> with coefficients in the commutative ring <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> was employed to construct the relevant observables, viz., SUSY Hamiltonian <span><math><mi>H</mi></math></span>, supercharge operator <span><math><mi>Q</mi></math></span> and its adjoint <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> all belonging to the 2 × 2 matrix algebra <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mo>[</mo><mi>ϑ</mi><mo>]</mo></mrow><mo>]</mo></mrow><mo>,</mo><msup><mrow><mo>∗</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with the help of a family of gauge-equivalent star products <span><math><msup><mrow><mo>∗</mo></mrow><mrow><mi>r</mi></mrow></msup></math></span>. The energy eigenvalues of the SUSY Hamiltonian all turned out to be independent of not only the gauge parameter <span><math><mi>r</mi></math></span> but also the noncommutativity parameter <span><math><mi>ϑ</mi></math></span>. The nontrivial Fermionic ground state was subsequently computed associated with the zero energy which indicates that supersymmetry remains unbroken in all orders of <span><math><mi>ϑ</mi></math></span>. The Witten index for the noncommutative SUSY Landau problem turns out to be <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span> corroborating the fact that there is no broken supersymmetry for the model we are considering.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"467 ","pages":"Article 169718"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000349162400126X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A gauge invariant mathematical formalism based on deformation quantization is outlined to model an N=2 supersymmetric system of a spin 1/2 charged particle placed in a nocommutative plane under the influence of a vertical uniform magnetic field. The noncommutative involutive algebra (C(R2)[[ϑ]],r) of formal power series in ϑ with coefficients in the commutative ring C(R2) was employed to construct the relevant observables, viz., SUSY Hamiltonian H, supercharge operator Q and its adjoint Q all belonging to the 2 × 2 matrix algebra M2(C(R2)[[ϑ]],r) with the help of a family of gauge-equivalent star products r. The energy eigenvalues of the SUSY Hamiltonian all turned out to be independent of not only the gauge parameter r but also the noncommutativity parameter ϑ. The nontrivial Fermionic ground state was subsequently computed associated with the zero energy which indicates that supersymmetry remains unbroken in all orders of ϑ. The Witten index for the noncommutative SUSY Landau problem turns out to be 1 corroborating the fact that there is no broken supersymmetry for the model we are considering.

从形变量子化的视角看非交换平面上的超对称量子力学
在垂直匀强磁场的影响下,概述了一种基于形变量子化的规不变数学形式主义,用以模拟一个由自旋1/2带电粒子组成的N=2超对称系统。利用非交换渐开线代数(C∞(R2)[[ϑ]],∗r)在ϑ中的形式幂级数与交换环C∞(R2)中的系数来构建相关观测指标,即SUSY 哈密顿量H、超电荷算子Q及其矢量Q†均属于2 × 2矩阵代数M2(C∞(R2)[[ϑ]],∗r),并借助一系列量规等效星积∗r。结果表明,SUSY 哈密顿的能量特征值不仅与轨规参数 r 无关,而且与非交换性参数 ϑ 无关。随后计算出了与零能量相关的非微观费米子基态,这表明超对称性在所有阶数的ϑ中都没有被打破。非交换 SUSY 朗道问题的维滕指数为-1,这证实了我们所考虑的模型不存在超对称性被破坏的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信