An articulated shape model to predict paediatric lower limb bone geometry using sparse landmarks

IF 2.4 3区 医学 Q3 BIOPHYSICS
Laura Carman , Thor F. Besier , Nynke B. Rooks , Julie Choisne
{"title":"An articulated shape model to predict paediatric lower limb bone geometry using sparse landmarks","authors":"Laura Carman ,&nbsp;Thor F. Besier ,&nbsp;Nynke B. Rooks ,&nbsp;Julie Choisne","doi":"10.1016/j.jbiomech.2024.112211","DOIUrl":null,"url":null,"abstract":"<div><p>Creating musculoskeletal models in a paediatric population currently involves either creating an image-based model from medical imaging data or a generic model using linear scaling. Image-based models provide a high level of accuracy but are time-consuming and costly to implement, on the other hand, linear scaling of an adult template musculoskeletal model is faster and common practice, but the output errors are significantly higher. An articulated shape model incorporates pose and shape to predict geometry for use in musculoskeletal models based on existing information from a population to provide both a fast and accurate method. From a population of 333 children aged 4–18 years old, we have developed an articulated shape model of paediatric lower limb bones to predict bone geometry from eight bone landmarks commonly used for motion capture. Bone surface root mean squared errors were found to be 2.63 ± 0.90 mm, 1.97 ± 0.61 mm, and 1.72 ± 0.51 mm for the pelvis, femur, and tibia/fibula, respectively. Linear scaling produced bone surface errors of 4.79 ± 1.39 mm, 4.38 ± 0.72 mm, and 4.39 ± 0.86 mm for the pelvis, femur, and tibia/fibula, respectively. Clinical bone measurement errors were low across all bones predicted using the articulated shape model, which outperformed linear scaling for all measurements. However, the model failed to accurately capture torsional measures (femoral anteversion and tibial torsion). Overall, the articulated shape model was shown to be a fast and accurate method to predict lower limb bone geometry in a paediatric population, superior to linear scaling.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021929024002896/pdfft?md5=2f0de1d37ca4928f8713854c676ddc77&pid=1-s2.0-S0021929024002896-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024002896","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Creating musculoskeletal models in a paediatric population currently involves either creating an image-based model from medical imaging data or a generic model using linear scaling. Image-based models provide a high level of accuracy but are time-consuming and costly to implement, on the other hand, linear scaling of an adult template musculoskeletal model is faster and common practice, but the output errors are significantly higher. An articulated shape model incorporates pose and shape to predict geometry for use in musculoskeletal models based on existing information from a population to provide both a fast and accurate method. From a population of 333 children aged 4–18 years old, we have developed an articulated shape model of paediatric lower limb bones to predict bone geometry from eight bone landmarks commonly used for motion capture. Bone surface root mean squared errors were found to be 2.63 ± 0.90 mm, 1.97 ± 0.61 mm, and 1.72 ± 0.51 mm for the pelvis, femur, and tibia/fibula, respectively. Linear scaling produced bone surface errors of 4.79 ± 1.39 mm, 4.38 ± 0.72 mm, and 4.39 ± 0.86 mm for the pelvis, femur, and tibia/fibula, respectively. Clinical bone measurement errors were low across all bones predicted using the articulated shape model, which outperformed linear scaling for all measurements. However, the model failed to accurately capture torsional measures (femoral anteversion and tibial torsion). Overall, the articulated shape model was shown to be a fast and accurate method to predict lower limb bone geometry in a paediatric population, superior to linear scaling.

利用稀疏地标预测儿科下肢骨骼几何形状的关节形状模型
在儿科人群中创建肌肉骨骼模型,目前要么是根据医学成像数据创建基于图像的模型,要么是使用线性缩放创建通用模型。基于图像的模型精度高,但实施起来耗时长、成本高;另一方面,对成人模板肌肉骨骼模型进行线性缩放的速度更快,也是常见的做法,但输出误差明显更高。铰接形状模型结合了姿势和形状来预测几何形状,以现有的人口信息为基础用于肌肉骨骼模型,提供了一种既快速又准确的方法。我们从 333 名 4-18 岁的儿童群体中,开发了一个儿科下肢骨的铰接形状模型,根据常用于运动捕捉的八个骨骼地标预测骨骼几何形状。结果发现,骨盆、股骨和胫骨/腓骨的骨面均方根误差分别为 2.63 ± 0.90 毫米、1.97 ± 0.61 毫米和 1.72 ± 0.51 毫米。线性缩放产生的骨盆、股骨和胫骨/腓骨骨面误差分别为 4.79 ± 1.39 毫米、4.38 ± 0.72 毫米和 4.39 ± 0.86 毫米。使用关节形状模型预测的所有骨骼的临床骨骼测量误差都很低,该模型在所有测量中的表现都优于线性比例模型。不过,该模型未能准确捕捉扭转测量值(股骨前旋和胫骨扭转)。总体而言,铰接形状模型是预测儿童下肢骨骼几何形状的一种快速而准确的方法,优于线性比例模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信