Shaopeng Li , Kurtis Gurley , Yanlin Guo , John van de Lindt
{"title":"Numerical investigation of turbulence effect on flight trajectory of spherical windborne debris: A multi-layered approach","authors":"Shaopeng Li , Kurtis Gurley , Yanlin Guo , John van de Lindt","doi":"10.1016/j.probengmech.2024.103661","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate modeling of the turbulent wind field is a crucial component of risk analysis for structures to windborne debris damage. Existing studies typically simplify the complexities of wind turbulence, and the potential influence on the accuracy of debris flight modeling has not been systematically demonstrated. This study takes a multi-layered approach to numerically simulate the flight trajectory of spherical debris in a turbulent wind field. Complexities are incrementally added to the simulated wind field to systematically investigate the influence of spatial correlation and non-Gaussian features of turbulence on debris flight behavior. The sensitivity of debris flight behavior to turbulent wind features will inform the design of debris flight tracking wind tunnel tests and building façade debris vulnerability modeling efforts.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"77 ","pages":"Article 103661"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000833","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate modeling of the turbulent wind field is a crucial component of risk analysis for structures to windborne debris damage. Existing studies typically simplify the complexities of wind turbulence, and the potential influence on the accuracy of debris flight modeling has not been systematically demonstrated. This study takes a multi-layered approach to numerically simulate the flight trajectory of spherical debris in a turbulent wind field. Complexities are incrementally added to the simulated wind field to systematically investigate the influence of spatial correlation and non-Gaussian features of turbulence on debris flight behavior. The sensitivity of debris flight behavior to turbulent wind features will inform the design of debris flight tracking wind tunnel tests and building façade debris vulnerability modeling efforts.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.