{"title":"Role of Hentriacontane on dexamethasone-induced insulin resistance in rats","authors":"Arjina Sultana, Bhrigu Kumar Das , Dipankar Saha","doi":"10.1016/j.prenap.2024.100063","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The worldwide incidence of morbidity and mortality linked to diabetes mellitus is on the ascent, with insulin resistance (IR) standing out as a key characteristic. Given the restricted safety and effectiveness observed in current therapeutic approaches, there exists a demand for novel anti-diabetic pharmaceuticals. This study aims to explore the impact of Hentriacontane, a naturally occurring long-chain alkane hydrocarbon, in an experimental model of IR induced by dexamethasone. The animals were administered dexamethasone (0.08 mg/kg b.w. <em>s.c.</em>) for six weeks to produce IR in the experimental animals. The animals distributed into five groups (n = 6) were: Normal group, IR group, IR + Hentriacontane low dose (2 mg/kg b.w./day <em>p.o.</em>), IR + Hentriacontane high dose (5 mg/kg b.w./day <em>p.o.</em>), and IR + Metformin (250 mg/kg b.w./day <em>p.o.</em>). Following the experimental period, blood/serum samples were taken for the assessment of various biochemical parameters, and a histopathological investigation of the pancreas was carried out.</p></div><div><h3>Results</h3><p>The inhibitory concentration (IC<sub>50</sub>) value of Hentriacontane in various <em>in-vitro</em> assays targeting anti-diabetic and anti-oxidant effects indicates its efficacy in mitigating diabetes and scavenging free radicals. Findings from <em>in-vivo</em> studies demonstrate that this phytoconstituent notably lowers fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels in dexamethasone-induced diabetic rats. Administration of hentriacontane effectively counteracts dexamethasone-induced impairments in oral glucose tolerance tests. Further, Hentriacontane normalizes lipid profiles and restores beta-cell function in diabetic rats.</p></div><div><h3>Conclusion</h3><p>This study has provided scientific support and evidence that Hentriacontane has a positive hypoglycemic impact on insulin-resistant rats induced by dexamethasone. Additional studies are required to ascertain the most effective dosage, duration of therapy and molecular mode of action.</p></div>","PeriodicalId":101014,"journal":{"name":"Pharmacological Research - Natural Products","volume":"4 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Research - Natural Products","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295019972400051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The worldwide incidence of morbidity and mortality linked to diabetes mellitus is on the ascent, with insulin resistance (IR) standing out as a key characteristic. Given the restricted safety and effectiveness observed in current therapeutic approaches, there exists a demand for novel anti-diabetic pharmaceuticals. This study aims to explore the impact of Hentriacontane, a naturally occurring long-chain alkane hydrocarbon, in an experimental model of IR induced by dexamethasone. The animals were administered dexamethasone (0.08 mg/kg b.w. s.c.) for six weeks to produce IR in the experimental animals. The animals distributed into five groups (n = 6) were: Normal group, IR group, IR + Hentriacontane low dose (2 mg/kg b.w./day p.o.), IR + Hentriacontane high dose (5 mg/kg b.w./day p.o.), and IR + Metformin (250 mg/kg b.w./day p.o.). Following the experimental period, blood/serum samples were taken for the assessment of various biochemical parameters, and a histopathological investigation of the pancreas was carried out.
Results
The inhibitory concentration (IC50) value of Hentriacontane in various in-vitro assays targeting anti-diabetic and anti-oxidant effects indicates its efficacy in mitigating diabetes and scavenging free radicals. Findings from in-vivo studies demonstrate that this phytoconstituent notably lowers fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels in dexamethasone-induced diabetic rats. Administration of hentriacontane effectively counteracts dexamethasone-induced impairments in oral glucose tolerance tests. Further, Hentriacontane normalizes lipid profiles and restores beta-cell function in diabetic rats.
Conclusion
This study has provided scientific support and evidence that Hentriacontane has a positive hypoglycemic impact on insulin-resistant rats induced by dexamethasone. Additional studies are required to ascertain the most effective dosage, duration of therapy and molecular mode of action.