Application of the modified GTN model in predicting Taylor impact fracture of 7XXX aluminum alloy

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fanlei Min , Kunyuan Gao , Hui Huang , Shengping Wen , Xiaolan Wu , Zuoren Nie , Dejing Zhou , Xuecheng Gao
{"title":"Application of the modified GTN model in predicting Taylor impact fracture of 7XXX aluminum alloy","authors":"Fanlei Min ,&nbsp;Kunyuan Gao ,&nbsp;Hui Huang ,&nbsp;Shengping Wen ,&nbsp;Xiaolan Wu ,&nbsp;Zuoren Nie ,&nbsp;Dejing Zhou ,&nbsp;Xuecheng Gao","doi":"10.1016/j.compstruc.2024.107457","DOIUrl":null,"url":null,"abstract":"<div><p>The Gurson-Tvergaard-Needleman (GTN) model has been improved to extend its application for high strain rate loading and assessed by using the Taylor impact process of 7xxx aluminum alloys. The existing modification method based on independent shear damage variables has been integrated into the enhanced GTN model to assess shear fracture. In addition, the effects of strain rate hardening, temperature softening, and viscosity resistance terms have been taken into account in the constitutive equation to accurately depict the material’s deformation behavior under high strain rates. A series of quasi-static mechanical tests and Split Hopkinson Pressure Bar (SHPB) tests with strain rates ranging from 1000<span><math><msup><mrow><mi>s</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></span> ∼ 5000 <span><math><msup><mrow><mi>s</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></span> were conducted on 7A52-T6 alloy and 7A62-T6 alloy. The Taylor impact experiments showed that the mushrooming deformation and shear fractures occurred as the impact velocity increased. Both the 7A52 and 7A62 alloys exhibited fracture characteristics of shear and void nucleation, and the voids only grew slightly after formation. The predicted fracture patterns in Taylor impact and the evolution trend of material strength using the enhanced GTN model are consistent with the experimental results.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579492400186X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Gurson-Tvergaard-Needleman (GTN) model has been improved to extend its application for high strain rate loading and assessed by using the Taylor impact process of 7xxx aluminum alloys. The existing modification method based on independent shear damage variables has been integrated into the enhanced GTN model to assess shear fracture. In addition, the effects of strain rate hardening, temperature softening, and viscosity resistance terms have been taken into account in the constitutive equation to accurately depict the material’s deformation behavior under high strain rates. A series of quasi-static mechanical tests and Split Hopkinson Pressure Bar (SHPB) tests with strain rates ranging from 1000s-1 ∼ 5000 s-1 were conducted on 7A52-T6 alloy and 7A62-T6 alloy. The Taylor impact experiments showed that the mushrooming deformation and shear fractures occurred as the impact velocity increased. Both the 7A52 and 7A62 alloys exhibited fracture characteristics of shear and void nucleation, and the voids only grew slightly after formation. The predicted fracture patterns in Taylor impact and the evolution trend of material strength using the enhanced GTN model are consistent with the experimental results.

改良 GTN 模型在预测 7XXX 铝合金泰勒冲击断裂中的应用
对 Gurson-Tvergaard-Needleman (GTN) 模型进行了改进,以扩大其在高应变率加载中的应用,并通过 7xxx 铝合金的泰勒冲击过程对其进行了评估。基于独立剪切破坏变量的现有修正方法已被集成到增强型 GTN 模型中,以评估剪切断裂。此外,构造方程中还考虑了应变速率硬化、温度软化和粘滞阻力项的影响,以准确描述材料在高应变速率下的变形行为。在 7A52-T6 合金和 7A62-T6 合金上进行了一系列准静态力学试验和应变速率范围为 1000s-1 ∼ 5000 s-1 的裂开霍普金森压力棒(SHPB)试验。泰勒冲击实验表明,随着冲击速度的增加,会出现蘑菇状变形和剪切断裂。7A52 和 7A62 合金都表现出剪切和空洞成核的断裂特征,空洞在形成后仅轻微增大。使用增强型 GTN 模型预测的泰勒冲击断裂模式和材料强度的演变趋势与实验结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信