Hyeri Jeon , Hyeonyeong Jo , Sumi Seo , Soo Jeong Lee , Seog Joon Yoon , Donghoon Han
{"title":"In-situ spectroelectrochemical analysis: Irreversible deformation of cesium lead bromide Perovskite Quantum Dots in SiOx matrices","authors":"Hyeri Jeon , Hyeonyeong Jo , Sumi Seo , Soo Jeong Lee , Seog Joon Yoon , Donghoon Han","doi":"10.1016/j.snr.2024.100208","DOIUrl":null,"url":null,"abstract":"<div><p>To practically utilized the organometallic lead halide perovskites to optoelectronic devices and photoelectrochemical cells, numerous efforts have been utilized to obtain the perovskites with low-energy process with coverage of various inorganic mediums to improve stability against humidity. By utilizing ligand-assisted reprecipitation process, under ambient condition at room temperature, the dimensionally confined perovskite quantum dots in silica matrices (PQD@SiO<sub>x</sub>) were obtained, and they were stable under several months under the ambient condition. To apply the PQD@SiO<sub>x</sub> to the photoelectrochemical cells by introducing direct contact between PQD@SiO<sub>x</sub> and electrolyte, the material/photophysical properties under electrochemical conditions are necessary to be studied. However, the role of silica coverage to the electrochemical behaviors of the PQD cores in the silica medium were not yet studied. In this work, under the electrochemical conditions, the oxidative and reductive behaviors of the PQD@SiO<sub>x</sub> were studied. Also, through <em>in-situ</em> spectroelectrochemical study, the electrochemically induced irreversible deformation process were tracked. The findings of this study could be used to understand role of silica coverage and develop the strategy to improve the protecting behavior of the silica for the PQD cores to utilize into the photoelectrochemical cells.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100208"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000249/pdfft?md5=f3232432c75a6c1d6c97987820de091d&pid=1-s2.0-S2666053924000249-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To practically utilized the organometallic lead halide perovskites to optoelectronic devices and photoelectrochemical cells, numerous efforts have been utilized to obtain the perovskites with low-energy process with coverage of various inorganic mediums to improve stability against humidity. By utilizing ligand-assisted reprecipitation process, under ambient condition at room temperature, the dimensionally confined perovskite quantum dots in silica matrices (PQD@SiOx) were obtained, and they were stable under several months under the ambient condition. To apply the PQD@SiOx to the photoelectrochemical cells by introducing direct contact between PQD@SiOx and electrolyte, the material/photophysical properties under electrochemical conditions are necessary to be studied. However, the role of silica coverage to the electrochemical behaviors of the PQD cores in the silica medium were not yet studied. In this work, under the electrochemical conditions, the oxidative and reductive behaviors of the PQD@SiOx were studied. Also, through in-situ spectroelectrochemical study, the electrochemically induced irreversible deformation process were tracked. The findings of this study could be used to understand role of silica coverage and develop the strategy to improve the protecting behavior of the silica for the PQD cores to utilize into the photoelectrochemical cells.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.