Tin Kyawoo , Naveed Karim , Chao Jiang , Saeed Ahmed , Weiliang Tian , Huiyu Li , Yongjun Feng
{"title":"Facile formation of hierarchical magnesium silicate hydrate microspheres as an adsorbent for the textile dyes","authors":"Tin Kyawoo , Naveed Karim , Chao Jiang , Saeed Ahmed , Weiliang Tian , Huiyu Li , Yongjun Feng","doi":"10.1016/j.partic.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Hierarchical porous magnesium silicate hydrate (MSH) microspheres composed of sheets are successfully developed under facile conditions using a hard template. The role of hexadecyltrimethylammonium bromide (CTAB) on the formation and adsorption behavior was also observed for the methyl orange and methylene blue. The formed MSH possesses a surface area of 453.24 m<sup>2</sup>/g, an average pore size of 6.38 nm, and a pore volume of 0.75 cm<sup>3</sup>/g without CTAB. Based on the role of CTAB and the change in the ratio of Mg/Si, the MSH retained its sphere-like structure with a variation in pore parameters. The formed MSH was used as an adsorbent to remove methylene blue and methyl orange. The pseudo-second-order kinetic and Langmuir Isotherm models are well-fitted, with a 256.4 mg/g removal capacity and 84.2 mg/g for methylene blue and methyl orange, respectively. The modified MSH with CTAB played a positive role for the methyl orange and a negative role for the methylene blue regarding removal performance.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 99-110"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001147","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical porous magnesium silicate hydrate (MSH) microspheres composed of sheets are successfully developed under facile conditions using a hard template. The role of hexadecyltrimethylammonium bromide (CTAB) on the formation and adsorption behavior was also observed for the methyl orange and methylene blue. The formed MSH possesses a surface area of 453.24 m2/g, an average pore size of 6.38 nm, and a pore volume of 0.75 cm3/g without CTAB. Based on the role of CTAB and the change in the ratio of Mg/Si, the MSH retained its sphere-like structure with a variation in pore parameters. The formed MSH was used as an adsorbent to remove methylene blue and methyl orange. The pseudo-second-order kinetic and Langmuir Isotherm models are well-fitted, with a 256.4 mg/g removal capacity and 84.2 mg/g for methylene blue and methyl orange, respectively. The modified MSH with CTAB played a positive role for the methyl orange and a negative role for the methylene blue regarding removal performance.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.