Hierarchical NiCo2O4 needle-like heterostructure arrays anchored on WO3 as high- performance asymmetric supercapacitors for energy storage applications
{"title":"Hierarchical NiCo2O4 needle-like heterostructure arrays anchored on WO3 as high- performance asymmetric supercapacitors for energy storage applications","authors":"Siveswari A, Gowthami V","doi":"10.1016/j.chphi.2024.100666","DOIUrl":null,"url":null,"abstract":"<div><p>The current work employs a novel approach to construct a composite nanostructure to improve the capacitive performance of a supercapacitor device. The work involved preparing cube-shaped WO<sub>3</sub> particles and depositing them onto the surface of NiCo<sub>2</sub>O<sub>4</sub> needles using a microwave technique. The structure of the composites enables efficient paths for ion transport and electron diffusion in supercapacitors. The hybrid composite electrode demonstrates a specific capacitance of 716 F <em>g</em><sup>−1</sup> at a current density of 5 Ag<sup>−1</sup>. The asymmetric capacitor device, which utilizes NiCo<sub>2</sub>O<sub>4</sub>@WO<sub>3</sub> as the positive electrode and AC as the negative electrode, exhibits an energy density of 48.57 Wh kg<sup>−1</sup> at a power density of 1120 W kg<sup>−1</sup>. In addition, the NiCo<sub>2</sub>O<sub>4</sub>@WO<sub>3</sub>//AC device has a favourable cycle life, maintaining 85.7 % of its capacitance retention after 10,000 cycles. The findings demonstrate the potential of NiCo<sub>2</sub>O<sub>4</sub>@WO<sub>3</sub>//AC to be used in the development of advanced hybrid electrodes for improved supercapacitors.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266702242400210X/pdfft?md5=beb29f1195cec3f1c016132d8080af8d&pid=1-s2.0-S266702242400210X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266702242400210X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current work employs a novel approach to construct a composite nanostructure to improve the capacitive performance of a supercapacitor device. The work involved preparing cube-shaped WO3 particles and depositing them onto the surface of NiCo2O4 needles using a microwave technique. The structure of the composites enables efficient paths for ion transport and electron diffusion in supercapacitors. The hybrid composite electrode demonstrates a specific capacitance of 716 F g−1 at a current density of 5 Ag−1. The asymmetric capacitor device, which utilizes NiCo2O4@WO3 as the positive electrode and AC as the negative electrode, exhibits an energy density of 48.57 Wh kg−1 at a power density of 1120 W kg−1. In addition, the NiCo2O4@WO3//AC device has a favourable cycle life, maintaining 85.7 % of its capacitance retention after 10,000 cycles. The findings demonstrate the potential of NiCo2O4@WO3//AC to be used in the development of advanced hybrid electrodes for improved supercapacitors.