A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuo Xu , Xinyi Ma , Hong Wang , Xin An , Ling Li
{"title":"A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network","authors":"Shuo Xu ,&nbsp;Xinyi Ma ,&nbsp;Hong Wang ,&nbsp;Xin An ,&nbsp;Ling Li","doi":"10.1016/j.joi.2024.101557","DOIUrl":null,"url":null,"abstract":"<div><p>In the procedure of exploring science-technology linkages, <em>non-patent literature</em> (NPL) in patents, particularly scientific NPL, is considered to signal the relatedness between the developed technology and the cited science. However, many prior art search tools may not be powered with the cross-collection recommendation technique, or have limited cross-collection recommendation capabilities. In this paper, we present an approach to recommend scientific NPL for a focal patent on the basis of heterogeneous information network. This study views this cross-collection recommendation problem as a link prediction problem on the basis of meta-path counting approach. Extensive experiments on DrugBank dataset in the pharmaceutical field indicate that our approach is feasible and effective. This work provides a novel perspective on scientific NPL recommendation for a focal patent and opens up further possibilities for the linkages between science and technology. Nevertheless, more experiments in other fields are required to verify the recommended effects of the approach proposed in this study.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000701","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the procedure of exploring science-technology linkages, non-patent literature (NPL) in patents, particularly scientific NPL, is considered to signal the relatedness between the developed technology and the cited science. However, many prior art search tools may not be powered with the cross-collection recommendation technique, or have limited cross-collection recommendation capabilities. In this paper, we present an approach to recommend scientific NPL for a focal patent on the basis of heterogeneous information network. This study views this cross-collection recommendation problem as a link prediction problem on the basis of meta-path counting approach. Extensive experiments on DrugBank dataset in the pharmaceutical field indicate that our approach is feasible and effective. This work provides a novel perspective on scientific NPL recommendation for a focal patent and opens up further possibilities for the linkages between science and technology. Nevertheless, more experiments in other fields are required to verify the recommended effects of the approach proposed in this study.

基于异构信息网络的科学非专利文献推荐方法
在探索科学技术联系的过程中,专利中的非专利文献(NPL),尤其是科学非专利文献,被认为是所开发技术与所引用科学之间相关性的信号。然而,许多现有技术检索工具可能不具备交叉检索推荐技术,或者交叉检索推荐功能有限。本文提出了一种基于异构信息网络为焦点专利推荐科学 NPL 的方法。本研究在元路径计数方法的基础上,将交叉检索推荐问题视为链接预测问题。在制药领域的 DrugBank 数据集上进行的大量实验表明,我们的方法是可行且有效的。这项工作为重点专利的科学 NPL 推荐提供了一个新的视角,并为科学与技术之间的联系开辟了更多可能性。然而,要验证本研究提出的方法的推荐效果,还需要在其他领域进行更多的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信