{"title":"Graphene- polymer nanocomposite-based wearable strain sensors for physiological signal Monitoring: Recent progress and challenges","authors":"Suvrajyoti Mishra, Biswajit Saha","doi":"10.1016/j.cossms.2024.101174","DOIUrl":null,"url":null,"abstract":"<div><p>Wearable strain sensors are emerging as promising devices for monitoring human motions and physiological signals in various fields, such as healthcare, robotics, and sports. Among various materials, polymer–graphene nanocomposites (PGNs) have attracted considerable attention due to their excellent mechanical, electrical, and thermal properties, as well as their facile fabrication methods. This review summarised the recent progress and challenges of PGN-based wearable strain sensors for physiological signal monitoring. First, the classification of PGNs based on the structural derivatives of graphene (such as graphene sheets, graphene oxide, reduced graphene oxide, and graphene quantum dots) and the strain sensing mechanisms (such as resistive and capacitive) were introduced. Then, we discussed the fabrication approaches of PGN-based strain sensors, including solution processing, melt blending, in-situ polymerization, spinning, printing, and coating. Afterward, this article highlighted the functional PGN-based strain sensors using various polymers and their applications in monitoring subtle and significant physiological signals. Finally, this work identified the underlying challenges and future perspectives of PGN-based wearable strain sensors for accurate and reliable physiological signal monitoring. This review provides a comprehensive overview of the current state-of-the-art of PGN-based wearable strain sensors and inspires further research in this field.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"31 ","pages":"Article 101174"},"PeriodicalIF":12.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000408","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable strain sensors are emerging as promising devices for monitoring human motions and physiological signals in various fields, such as healthcare, robotics, and sports. Among various materials, polymer–graphene nanocomposites (PGNs) have attracted considerable attention due to their excellent mechanical, electrical, and thermal properties, as well as their facile fabrication methods. This review summarised the recent progress and challenges of PGN-based wearable strain sensors for physiological signal monitoring. First, the classification of PGNs based on the structural derivatives of graphene (such as graphene sheets, graphene oxide, reduced graphene oxide, and graphene quantum dots) and the strain sensing mechanisms (such as resistive and capacitive) were introduced. Then, we discussed the fabrication approaches of PGN-based strain sensors, including solution processing, melt blending, in-situ polymerization, spinning, printing, and coating. Afterward, this article highlighted the functional PGN-based strain sensors using various polymers and their applications in monitoring subtle and significant physiological signals. Finally, this work identified the underlying challenges and future perspectives of PGN-based wearable strain sensors for accurate and reliable physiological signal monitoring. This review provides a comprehensive overview of the current state-of-the-art of PGN-based wearable strain sensors and inspires further research in this field.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field