Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Stanislav Antontsev , Ivan Kuznetsov , Sergey Sazhenkov , Sergey Shmarev
{"title":"Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer","authors":"Stanislav Antontsev ,&nbsp;Ivan Kuznetsov ,&nbsp;Sergey Sazhenkov ,&nbsp;Sergey Shmarev","doi":"10.1016/j.nonrwa.2024.104162","DOIUrl":null,"url":null,"abstract":"<div><p>We study the multi-dimensional Cauchy–Dirichlet problem for the <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>-growth. The minor term depends on a positive integer parameter <span><math><mi>n</mi></math></span> and, as <span><math><mrow><mi>n</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span>, converges weakly<span><math><msup><mrow></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> to the expression incorporating the Dirac delta function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta function, is formed as <span><math><mrow><mi>n</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span>, and that the family of regular weak solutions of the original problem converges to the so-called ‘strong-weak’ solution of a two-scale microscopic–macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads in a number of cases to the purely macroscopic formulation for the <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>-parabolic equation provided with the corrected initial data.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the multi-dimensional Cauchy–Dirichlet problem for the p(x,t)-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the q(x,t)-growth. The minor term depends on a positive integer parameter n and, as n+, converges weakly to the expression incorporating the Dirac delta function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta function, is formed as n+, and that the family of regular weak solutions of the original problem converges to the so-called ‘strong-weak’ solution of a two-scale microscopic–macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads in a number of cases to the purely macroscopic formulation for the p(x,t)-parabolic equation provided with the corrected initial data.

具有无穷小初始层的脉冲 p(x,t)- 抛物方程的解
我们研究了带有规则非线性次项的 p(x,t)-parabolic 方程的多维 Cauchy-Dirichlet 问题,它模拟了非瞬时但非常快速的吸收与 q(x,t)-growth 的关系。次项取决于正整数参数 n,当 n→+∞ 时,次项弱收敛于包含狄拉克三角函数的表达式⋆,而狄拉克三角函数又模拟了初始时刻的瞬时吸收。我们证明,与狄拉克三角函数相关的无穷小初始层在 n→+∞ 时形成,原始问题的正则弱解族收敛到双尺度微观-宏观模型的所谓 "强弱 "解。此外,微观结构方程可以显式积分,这在许多情况下导致了具有修正初始数据的 p(x,t)- 抛物线方程的纯宏观公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信