Residue sums of Dickson polynomials over finite fields

Pub Date : 2024-06-05 DOI:10.1016/j.jnt.2024.04.016
Thomas Brazelton , Joshua Harrington , Matthew Litman , Tony W.H. Wong
{"title":"Residue sums of Dickson polynomials over finite fields","authors":"Thomas Brazelton ,&nbsp;Joshua Harrington ,&nbsp;Matthew Litman ,&nbsp;Tony W.H. Wong","doi":"10.1016/j.jnt.2024.04.016","DOIUrl":null,"url":null,"abstract":"<div><p>Given a polynomial with integral coefficients, one can inquire about the possible residues it can take in its image modulo a prime <em>p</em>. The sum over the distinct residues can sometimes be computed independent of the prime <em>p</em>; for example, Gauss showed that the sum over quadratic residues vanishes modulo a prime. In this paper we provide a closed form for the sum over distinct residues in the image of Dickson polynomials of arbitrary degree over finite fields of odd characteristic, and prove a complete characterization of the size of the value set. Our result provides the first non-trivial classification of such a sum for a family of polynomials of unbounded degree.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001240/pdfft?md5=f1a2e3015f4f9442190153e6f02f006d&pid=1-s2.0-S0022314X24001240-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a polynomial with integral coefficients, one can inquire about the possible residues it can take in its image modulo a prime p. The sum over the distinct residues can sometimes be computed independent of the prime p; for example, Gauss showed that the sum over quadratic residues vanishes modulo a prime. In this paper we provide a closed form for the sum over distinct residues in the image of Dickson polynomials of arbitrary degree over finite fields of odd characteristic, and prove a complete characterization of the size of the value set. Our result provides the first non-trivial classification of such a sum for a family of polynomials of unbounded degree.

分享
查看原文
有限域上狄克森多项式的残差和
给定一个具有积分系数的多项式,我们可以探究它在素数 p 的调制下在其图像中可能的残差。在本文中,我们提供了奇特征有限域上任意阶狄克森多项式映像中不同残差之和的封闭形式,并证明了值集大小的完整特征。我们的结果为无界度多项式族的此类和提供了第一个非难分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信