{"title":"Hook length biases in ordinary and t-regular partitions","authors":"Gurinder Singh, Rupam Barman","doi":"10.1016/j.jnt.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study hook lengths of ordinary partitions and <em>t</em>-regular partitions. We establish hook length biases for the ordinary partitions and motivated by them we find a few interesting hook length biases in 2-regular partitions. For a positive integer <em>k</em>, let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the partitions of <em>n</em>. We prove that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≠</mo><mi>k</mi><mo>+</mo><mn>1</mn></math></span>; and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. For integers <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the <em>t</em>-regular partitions of <em>n</em>. We find generating functions of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for certain values of <em>t</em> and <em>k</em>. Exploring hook length biases for <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, we observe that in certain cases biases are opposite to the biases for ordinary partitions. We prove that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>></mo><mn>4</mn></math></span>, whereas <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. We also propose some conjectures on biases among <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study hook lengths of ordinary partitions and t-regular partitions. We establish hook length biases for the ordinary partitions and motivated by them we find a few interesting hook length biases in 2-regular partitions. For a positive integer k, let denote the number of hooks of length k in all the partitions of n. We prove that for all and ; and for . For integers and , let denote the number of hooks of length k in all the t-regular partitions of n. We find generating functions of for certain values of t and k. Exploring hook length biases for , we observe that in certain cases biases are opposite to the biases for ordinary partitions. We prove that for all , whereas for all . We also propose some conjectures on biases among .