Hook length biases in ordinary and t-regular partitions

IF 0.6 3区 数学 Q3 MATHEMATICS
Gurinder Singh, Rupam Barman
{"title":"Hook length biases in ordinary and t-regular partitions","authors":"Gurinder Singh,&nbsp;Rupam Barman","doi":"10.1016/j.jnt.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study hook lengths of ordinary partitions and <em>t</em>-regular partitions. We establish hook length biases for the ordinary partitions and motivated by them we find a few interesting hook length biases in 2-regular partitions. For a positive integer <em>k</em>, let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the partitions of <em>n</em>. We prove that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≠</mo><mi>k</mi><mo>+</mo><mn>1</mn></math></span>; and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. For integers <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the <em>t</em>-regular partitions of <em>n</em>. We find generating functions of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for certain values of <em>t</em> and <em>k</em>. Exploring hook length biases for <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, we observe that in certain cases biases are opposite to the biases for ordinary partitions. We prove that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>&gt;</mo><mn>4</mn></math></span>, whereas <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. We also propose some conjectures on biases among <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 41-58"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001318","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study hook lengths of ordinary partitions and t-regular partitions. We establish hook length biases for the ordinary partitions and motivated by them we find a few interesting hook length biases in 2-regular partitions. For a positive integer k, let p(k)(n) denote the number of hooks of length k in all the partitions of n. We prove that p(k)(n)p(k+1)(n) for all n0 and nk+1; and p(k)(k+1)p(k+1)(k+1)=1 for k2. For integers t2 and k1, let bt,k(n) denote the number of hooks of length k in all the t-regular partitions of n. We find generating functions of bt,k(n) for certain values of t and k. Exploring hook length biases for bt,k(n), we observe that in certain cases biases are opposite to the biases for ordinary partitions. We prove that b2,2(n)b2,1(n) for all n>4, whereas b2,2(n)b2,3(n) for all n0. We also propose some conjectures on biases among bt,k(n).

普通分区和 t 规则分区中的钩长偏差
本文研究普通分区和 t-regular 分区的钩长。我们建立了普通分区的钩长偏差,并在此基础上发现了 2-regular 分区中一些有趣的钩长偏差。对于正整数 k,让 p(k)(n) 表示 n 的所有分区中长度为 k 的钩码数。我们证明,对于所有 n≥0 和 n≠k+1 的情况,p(k)(n)≥p(k+1)(n);对于 k≥2 的情况,p(k)(k+1)-p(k+1)(k+1)=-1。对于整数 t≥2 和 k≥1,让 bt,k(n)表示 n 的所有 t 规则分区中长度为 k 的钩子数。我们发现 bt,k(n)在某些 t 和 k 值下的生成函数。在探索 bt,k(n)的钩码长度偏差时,我们发现在某些情况下偏差与普通分区的偏差相反。我们证明了对于所有 n>4 b2,2(n)≥b2,1(n),而对于所有 n≥0 b2,2(n)≥b2,3(n)。我们还提出了一些关于 bt,k(n) 偏差的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信