Point-set games and functions with the hereditary small oscillation property

IF 0.6 4区 数学 Q3 MATHEMATICS
Marek Balcerzak , Tomasz Natkaniec , Piotr Szuca
{"title":"Point-set games and functions with the hereditary small oscillation property","authors":"Marek Balcerzak ,&nbsp;Tomasz Natkaniec ,&nbsp;Piotr Szuca","doi":"10.1016/j.topol.2024.109000","DOIUrl":null,"url":null,"abstract":"<div><p>Given a metric space <em>X</em>, we consider certain families of functions <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> having the hereditary oscillation property HSOP and the hereditary continuous restriction property HCRP on large sets. When <em>X</em> is Polish, among them there are families of Baire measurable functions, <span><math><mover><mrow><mi>μ</mi></mrow><mo>‾</mo></mover></math></span>-measurable functions (for a finite nonatomic Borel measure <em>μ</em> on <em>X</em>) and Marczewski measurable functions. We obtain their characterizations using a class of equivalent point-set games. In similar aspects, we study cliquish functions, SZ-functions and countably continuous functions.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"354 ","pages":"Article 109000"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166864124001858/pdfft?md5=e79a82c13d4f51b41f2558f42380e6dd&pid=1-s2.0-S0166864124001858-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124001858","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a metric space X, we consider certain families of functions f:XR having the hereditary oscillation property HSOP and the hereditary continuous restriction property HCRP on large sets. When X is Polish, among them there are families of Baire measurable functions, μ-measurable functions (for a finite nonatomic Borel measure μ on X) and Marczewski measurable functions. We obtain their characterizations using a class of equivalent point-set games. In similar aspects, we study cliquish functions, SZ-functions and countably continuous functions.

具有遗传小振荡特性的点集博弈和函数
给定一个度量空间 X,我们考虑在大集合上具有遗传振荡性质 HSOP 和遗传连续限制性质 HCRP 的函数 f:X→R 的某些族。当 X 是波兰语时,其中有 Baire 可测函数族、μ‾可测函数族(对于 X 上的有限非原子 Borel 度量 μ)和 Marczewski 可测函数族。我们利用一类等价点集博弈得到了它们的特征。在类似方面,我们还研究了簇函数、SZ 函数和可数连续函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信