Wenxin Zhang , Shubi Zhao , Siwen Wu , Tianran Song , Qifeng Guan , Junwei Xu , Jingxi Wang , Ping Li , Yubo Fan
{"title":"A multifunctional baicalin-coordinated borate ions/bacterial cellulose composite hydrogel for efficient treatment of chronic wounds","authors":"Wenxin Zhang , Shubi Zhao , Siwen Wu , Tianran Song , Qifeng Guan , Junwei Xu , Jingxi Wang , Ping Li , Yubo Fan","doi":"10.1016/j.medntd.2024.100315","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial infection, poor vascular regeneration and abnormal inflammation often impede the smooth repair of skin wounds, and these problems need to be effectively addressed. Baicalin is a natural flavonoid compound with a wide range of beneficial pharmacological effects, including antibacterial, angiogenic and anti-inflammatory properties. However, its clinical application is severely limited by poor water solubility and low bioavailability. In this study, we developed a multifunctional baicalin-coordinated borate ions/bacterial cellulose (Bai-B/BC) composite hydrogel at a low gelation concentration to promote chronic wound healing. On the one hand, the mechanical property of the self-assembled Bai-B hydrogel network was improved by the BC hydrogel network in the composite hydrogel; on the other hand, the self-assembled Bai-B hydrogel network gave the composite hydrogel the ability to self-heal and continuously release baicalin and boron ions. Importantly, baicalin and borate ions in Bai-B/BC composite hydrogel dressing played a synergistic pharmacological role in wound healing. The <em>in vitro</em> results showed that the Bai-B/BC hydrogel had excellent biocompatibility, antibacterial activity and anti-inflammatory effects in comparison with the control group and other hydrogel groups. Further <em>in vivo</em> studies displayed that the Bai-B/BC hydrogel significantly accelerated the healing process of chronic wound by promoting uniform and orderly collagen deposition, granulation tissue formation and vascular regeneration. The Bai-B-based self-assembled hydrogel is set to become a star dressing in the treatment of chronic wounds.</p></div>","PeriodicalId":33783,"journal":{"name":"Medicine in Novel Technology and Devices","volume":"23 ","pages":"Article 100315"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590093524000316/pdfft?md5=2638301b5b4c00acaec68d18146b75e8&pid=1-s2.0-S2590093524000316-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Novel Technology and Devices","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590093524000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial infection, poor vascular regeneration and abnormal inflammation often impede the smooth repair of skin wounds, and these problems need to be effectively addressed. Baicalin is a natural flavonoid compound with a wide range of beneficial pharmacological effects, including antibacterial, angiogenic and anti-inflammatory properties. However, its clinical application is severely limited by poor water solubility and low bioavailability. In this study, we developed a multifunctional baicalin-coordinated borate ions/bacterial cellulose (Bai-B/BC) composite hydrogel at a low gelation concentration to promote chronic wound healing. On the one hand, the mechanical property of the self-assembled Bai-B hydrogel network was improved by the BC hydrogel network in the composite hydrogel; on the other hand, the self-assembled Bai-B hydrogel network gave the composite hydrogel the ability to self-heal and continuously release baicalin and boron ions. Importantly, baicalin and borate ions in Bai-B/BC composite hydrogel dressing played a synergistic pharmacological role in wound healing. The in vitro results showed that the Bai-B/BC hydrogel had excellent biocompatibility, antibacterial activity and anti-inflammatory effects in comparison with the control group and other hydrogel groups. Further in vivo studies displayed that the Bai-B/BC hydrogel significantly accelerated the healing process of chronic wound by promoting uniform and orderly collagen deposition, granulation tissue formation and vascular regeneration. The Bai-B-based self-assembled hydrogel is set to become a star dressing in the treatment of chronic wounds.