{"title":"Intelligent defense strategies: Comprehensive attack detection in VANET with deep reinforcement learning","authors":"Rukhsar Sultana, Jyoti Grover, Meenakshi Tripathi","doi":"10.1016/j.pmcj.2024.101962","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicular Ad Hoc Network (VANET) facilitates the exchange of vehicular information through Vehicle-to-Vehicle (V2V) communication, contributing to Cooperative Intelligent Transportation Systems (C-ITS). The transmitted messages among vehicles are vulnerable to various security threats executed by malicious insider nodes. The dynamic VANET necessitates context-aware solutions for detecting various security attacks. Existing learning and deterministic mechanisms showed high detection accuracy for attacks on which they were trained explicitly for large datasets. Therefore, we propose an intelligent framework utilizing Deep Reinforcement Learning (DRL) for attack detection in evolving scenarios and mitigate the need for extensive training datasets. Our approach employs a Deep Q Network (DQN) trained on a compact dataset encompassing multiple attacks. The trained model is then applied to an unknown and extensive dataset, detecting various attacks with high accuracy. Notably, the model autonomously updates itself upon observing changes in the network context. This framework represents a promising security solution that is effective and adaptable for V2V communication in VANET.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"103 ","pages":"Article 101962"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000877","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicular Ad Hoc Network (VANET) facilitates the exchange of vehicular information through Vehicle-to-Vehicle (V2V) communication, contributing to Cooperative Intelligent Transportation Systems (C-ITS). The transmitted messages among vehicles are vulnerable to various security threats executed by malicious insider nodes. The dynamic VANET necessitates context-aware solutions for detecting various security attacks. Existing learning and deterministic mechanisms showed high detection accuracy for attacks on which they were trained explicitly for large datasets. Therefore, we propose an intelligent framework utilizing Deep Reinforcement Learning (DRL) for attack detection in evolving scenarios and mitigate the need for extensive training datasets. Our approach employs a Deep Q Network (DQN) trained on a compact dataset encompassing multiple attacks. The trained model is then applied to an unknown and extensive dataset, detecting various attacks with high accuracy. Notably, the model autonomously updates itself upon observing changes in the network context. This framework represents a promising security solution that is effective and adaptable for V2V communication in VANET.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.