{"title":"Networks and their degree distribution, leading to a new concept of small worlds","authors":"Leo Egghe","doi":"10.1016/j.joi.2024.101554","DOIUrl":null,"url":null,"abstract":"<div><p>The degree distribution, referred to as the delta-sequence of a network is studied. Using the non-normalized Lorenz curve, we apply a generalized form of the classical majorization partial order.</p><p>Next, we introduce a new class of small worlds, namely those based on the degrees of nodes in a network. Similar to a previous study, small worlds are defined as sequences of networks with certain limiting properties. We distinguish between three types of small worlds: those based on the highest degree, those based on the average degree, and those based on the median degree. We show that these new classes of small worlds are different from those introduced previously based on the diameter of the network or the average and median distance between nodes. However, there exist sequences of networks that qualify as small worlds in both senses of the word, with stars being an example. Our approach enables the comparison of two networks with an equal number of nodes in terms of their “small-worldliness”.</p><p>Finally, we introduced neighboring arrays based on the degrees of the zeroth and first-order neighbors.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 3","pages":"Article 101554"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000671","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The degree distribution, referred to as the delta-sequence of a network is studied. Using the non-normalized Lorenz curve, we apply a generalized form of the classical majorization partial order.
Next, we introduce a new class of small worlds, namely those based on the degrees of nodes in a network. Similar to a previous study, small worlds are defined as sequences of networks with certain limiting properties. We distinguish between three types of small worlds: those based on the highest degree, those based on the average degree, and those based on the median degree. We show that these new classes of small worlds are different from those introduced previously based on the diameter of the network or the average and median distance between nodes. However, there exist sequences of networks that qualify as small worlds in both senses of the word, with stars being an example. Our approach enables the comparison of two networks with an equal number of nodes in terms of their “small-worldliness”.
Finally, we introduced neighboring arrays based on the degrees of the zeroth and first-order neighbors.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.