{"title":"Enhancing unilateral EMAT performance through topological optimization of Halbach permanent Magnet arrays","authors":"Ting Zhang, Xiaoqing Yang, Meng Li, Huajiang Peng, Wentao Peng","doi":"10.1016/j.ndteint.2024.103172","DOIUrl":null,"url":null,"abstract":"<div><p>A novel unilaterally excited electromagnetic acoustic transducer (EMAT) is proposed as a solution to address the challenge of weak electromagnetic ultrasonic detection signals being susceptible to interference from clutter noise signals. EMAT employs Halbach permanent magnet array (HPMA) structure and a coil designed based on Huygens superposition principle. This design enables the generation and reception of highly directive Rayleigh surface waves in aluminum plates. To enhance the operational efficiency of EMAT while maintaining a high level of directivity for surface waves, a penalty function is implemented in COMSOL Multiphysics for the topological optimization of EMAT. The objective function in this optimization process is based on covariance (COV) of the magnetic induction intensity. The research results suggest that the homogeneity of the magnetic induction intensity within the coil region is enhanced by 50 % following topological optimization compared to the original design. The energy conversion efficiency of EMAT is enhanced by 5 times compared to traditional designs. The surface wave speed was determined to be 2631 m/s when measured at a frequency of 400 kHz. The value indicates a relative error of 6.37 % in comparison to the theoretical speed. The results indicate that EMAT has the capability to generate high-directional and pure Rayleigh waves.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"146 ","pages":"Article 103172"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001373","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
A novel unilaterally excited electromagnetic acoustic transducer (EMAT) is proposed as a solution to address the challenge of weak electromagnetic ultrasonic detection signals being susceptible to interference from clutter noise signals. EMAT employs Halbach permanent magnet array (HPMA) structure and a coil designed based on Huygens superposition principle. This design enables the generation and reception of highly directive Rayleigh surface waves in aluminum plates. To enhance the operational efficiency of EMAT while maintaining a high level of directivity for surface waves, a penalty function is implemented in COMSOL Multiphysics for the topological optimization of EMAT. The objective function in this optimization process is based on covariance (COV) of the magnetic induction intensity. The research results suggest that the homogeneity of the magnetic induction intensity within the coil region is enhanced by 50 % following topological optimization compared to the original design. The energy conversion efficiency of EMAT is enhanced by 5 times compared to traditional designs. The surface wave speed was determined to be 2631 m/s when measured at a frequency of 400 kHz. The value indicates a relative error of 6.37 % in comparison to the theoretical speed. The results indicate that EMAT has the capability to generate high-directional and pure Rayleigh waves.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.