Fatima Zahrah , Jason R.C. Nurse , Michael Goldsmith
{"title":"Unmasking hate in the pandemic: A cross-platform study of the COVID-19 infodemic","authors":"Fatima Zahrah , Jason R.C. Nurse , Michael Goldsmith","doi":"10.1016/j.bdr.2024.100481","DOIUrl":null,"url":null,"abstract":"<div><p>The past few decades have established how digital technologies and platforms have provided an effective medium for spreading hateful content, which has been linked to several catastrophic consequences. Recent academic studies have also highlighted how online hate is a phenomenon that strategically makes use of multiple online platforms. In this article, we seek to advance the current research landscape by harnessing a cross-platform approach to computationally analyse content relating to the 2020 COVID-19 pandemic. More specifically, we analyse content on hate-specific environments from Twitter, Reddit, 4chan and Stormfront. Our findings show how content and posting activity can change across platforms, and how the psychological components of online content can differ depending on the platform being used. Through this, we provide unique insight into the cross-platform behaviours of online hate. We further define several avenues for future research within this field so as to gain a more comprehensive understanding of the global hate ecosystem.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214579624000558/pdfft?md5=a8e2330701051448866927c6cb877d10&pid=1-s2.0-S2214579624000558-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000558","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The past few decades have established how digital technologies and platforms have provided an effective medium for spreading hateful content, which has been linked to several catastrophic consequences. Recent academic studies have also highlighted how online hate is a phenomenon that strategically makes use of multiple online platforms. In this article, we seek to advance the current research landscape by harnessing a cross-platform approach to computationally analyse content relating to the 2020 COVID-19 pandemic. More specifically, we analyse content on hate-specific environments from Twitter, Reddit, 4chan and Stormfront. Our findings show how content and posting activity can change across platforms, and how the psychological components of online content can differ depending on the platform being used. Through this, we provide unique insight into the cross-platform behaviours of online hate. We further define several avenues for future research within this field so as to gain a more comprehensive understanding of the global hate ecosystem.