Two-dimensional data partitioning for non-negative matrix tri-factorization

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiaxing Yan , Hai Liu , Zhiqi Lei , Yanghui Rao , Guan Liu , Haoran Xie , Xiaohui Tao , Fu Lee Wang
{"title":"Two-dimensional data partitioning for non-negative matrix tri-factorization","authors":"Jiaxing Yan ,&nbsp;Hai Liu ,&nbsp;Zhiqi Lei ,&nbsp;Yanghui Rao ,&nbsp;Guan Liu ,&nbsp;Haoran Xie ,&nbsp;Xiaohui Tao ,&nbsp;Fu Lee Wang","doi":"10.1016/j.bdr.2024.100473","DOIUrl":null,"url":null,"abstract":"<div><p>As a two-sided clustering and dimensionality reduction paradigm, Non-negative Matrix Tri-Factorization (NMTF) has attracted much attention in machine learning and data mining researchers due to its excellent performance and reliable theoretical support. Unlike Non-negative Matrix Factorization (NMF) methods applicable to one-sided clustering only, NMTF introduces an additional factor matrix and uses the inherent duality of data to realize the mutual promotion of sample clustering and feature clustering, thus showing great advantages in many scenarios (e.g., text co-clustering). However, the existing methods for solving NMTF usually involve intensive matrix multiplication, which is characterized by high time and space complexities, that is, there are limitations of slow convergence of the multiplicative update rules and high memory overhead. In order to solve the above problems, this paper develops a distributed parallel algorithm with a 2-dimensional data partition scheme for NMTF (i.e., PNMTF-2D). Experiments on multiple text datasets show that the proposed PNMTF-2D can substantially improve the computational efficiency of NMTF (e.g., the average iteration time is reduced by up to 99.7% on Amazon) while ensuring the effectiveness of convergence and co-clustering.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000492","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As a two-sided clustering and dimensionality reduction paradigm, Non-negative Matrix Tri-Factorization (NMTF) has attracted much attention in machine learning and data mining researchers due to its excellent performance and reliable theoretical support. Unlike Non-negative Matrix Factorization (NMF) methods applicable to one-sided clustering only, NMTF introduces an additional factor matrix and uses the inherent duality of data to realize the mutual promotion of sample clustering and feature clustering, thus showing great advantages in many scenarios (e.g., text co-clustering). However, the existing methods for solving NMTF usually involve intensive matrix multiplication, which is characterized by high time and space complexities, that is, there are limitations of slow convergence of the multiplicative update rules and high memory overhead. In order to solve the above problems, this paper develops a distributed parallel algorithm with a 2-dimensional data partition scheme for NMTF (i.e., PNMTF-2D). Experiments on multiple text datasets show that the proposed PNMTF-2D can substantially improve the computational efficiency of NMTF (e.g., the average iteration time is reduced by up to 99.7% on Amazon) while ensuring the effectiveness of convergence and co-clustering.

非负矩阵三因子化的二维数据分区
作为一种双面聚类和降维范式,非负矩阵三因式分解(NMTF)以其优异的性能和可靠的理论支持吸引了机器学习和数据挖掘研究人员的广泛关注。与只适用于单边聚类的非负矩阵因式分解(NMF)方法不同,NMTF 引入了额外的因式矩阵,利用数据固有的二元性实现了样本聚类和特征聚类的相互促进,因此在很多场景(如文本共聚类)中都显示出巨大的优势。然而,现有的 NMTF 求解方法通常涉及密集的矩阵乘法,具有时间和空间复杂度高的特点,即存在乘法更新规则收敛慢和内存开销大的局限性。为了解决上述问题,本文针对 NMTF 开发了一种具有二维数据分区方案的分布式并行算法(即 PNMTF-2D)。在多个文本数据集上的实验表明,所提出的 PNMTF-2D 可以大幅提高 NMTF 的计算效率(例如,在亚马逊上平均迭代时间最多可缩短 99.7%),同时确保收敛和共聚类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信