Jiaxing Yan , Hai Liu , Zhiqi Lei , Yanghui Rao , Guan Liu , Haoran Xie , Xiaohui Tao , Fu Lee Wang
{"title":"Two-dimensional data partitioning for non-negative matrix tri-factorization","authors":"Jiaxing Yan , Hai Liu , Zhiqi Lei , Yanghui Rao , Guan Liu , Haoran Xie , Xiaohui Tao , Fu Lee Wang","doi":"10.1016/j.bdr.2024.100473","DOIUrl":null,"url":null,"abstract":"<div><p>As a two-sided clustering and dimensionality reduction paradigm, Non-negative Matrix Tri-Factorization (NMTF) has attracted much attention in machine learning and data mining researchers due to its excellent performance and reliable theoretical support. Unlike Non-negative Matrix Factorization (NMF) methods applicable to one-sided clustering only, NMTF introduces an additional factor matrix and uses the inherent duality of data to realize the mutual promotion of sample clustering and feature clustering, thus showing great advantages in many scenarios (e.g., text co-clustering). However, the existing methods for solving NMTF usually involve intensive matrix multiplication, which is characterized by high time and space complexities, that is, there are limitations of slow convergence of the multiplicative update rules and high memory overhead. In order to solve the above problems, this paper develops a distributed parallel algorithm with a 2-dimensional data partition scheme for NMTF (i.e., PNMTF-2D). Experiments on multiple text datasets show that the proposed PNMTF-2D can substantially improve the computational efficiency of NMTF (e.g., the average iteration time is reduced by up to 99.7% on Amazon) while ensuring the effectiveness of convergence and co-clustering.</p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"37 ","pages":"Article 100473"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000492","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As a two-sided clustering and dimensionality reduction paradigm, Non-negative Matrix Tri-Factorization (NMTF) has attracted much attention in machine learning and data mining researchers due to its excellent performance and reliable theoretical support. Unlike Non-negative Matrix Factorization (NMF) methods applicable to one-sided clustering only, NMTF introduces an additional factor matrix and uses the inherent duality of data to realize the mutual promotion of sample clustering and feature clustering, thus showing great advantages in many scenarios (e.g., text co-clustering). However, the existing methods for solving NMTF usually involve intensive matrix multiplication, which is characterized by high time and space complexities, that is, there are limitations of slow convergence of the multiplicative update rules and high memory overhead. In order to solve the above problems, this paper develops a distributed parallel algorithm with a 2-dimensional data partition scheme for NMTF (i.e., PNMTF-2D). Experiments on multiple text datasets show that the proposed PNMTF-2D can substantially improve the computational efficiency of NMTF (e.g., the average iteration time is reduced by up to 99.7% on Amazon) while ensuring the effectiveness of convergence and co-clustering.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.