Links in orthoplicial Apollonian packings

IF 1 3区 数学 Q1 MATHEMATICS
Jorge L. Ramírez Alfonsín , Iván Rasskin
{"title":"Links in orthoplicial Apollonian packings","authors":"Jorge L. Ramírez Alfonsín ,&nbsp;Iván Rasskin","doi":"10.1016/j.ejc.2024.104017","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish a connection between Apollonian packings and knot theory. We introduce new representations of links realized in the tangency graph of the regular crystallographic sphere packings. Particularly, we prove that any algebraic link can be realized in the cubic section of the orthoplicial Apollonian packing. We use these representations to improve the upper bound on the ball number of an infinite family of alternating algebraic links. Furthermore, the later allow us to reinterpret the correspondence of rational tangles and rational numbers and to reveal geometrically primitive solutions for the Diophantine equation <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>=</mo><mn>2</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a connection between Apollonian packings and knot theory. We introduce new representations of links realized in the tangency graph of the regular crystallographic sphere packings. Particularly, we prove that any algebraic link can be realized in the cubic section of the orthoplicial Apollonian packing. We use these representations to improve the upper bound on the ball number of an infinite family of alternating algebraic links. Furthermore, the later allow us to reinterpret the correspondence of rational tangles and rational numbers and to reveal geometrically primitive solutions for the Diophantine equation x4+y4+z4=2t2.

正交阿波罗包装中的链接
在本文中,我们建立了阿波罗填料与结理论之间的联系。我们引入了在规则晶体学球状堆积的切线图中实现的链接的新表示。特别是,我们证明了任何代数链接都可以在正交阿波罗填料的立方体部分中实现。我们利用这些表示改进了交替代数链接无穷族的球数上限。此外,这些表征还让我们重新解释了有理切线与有理数的对应关系,并揭示了 Diophantine 方程 x4+y4+z4=2t2 的几何原始解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信