Ye Cui , Qingchen Xiao , Boyan Wang , Zishan Li , Yuxin Zhai , Kailin Xie , Gaoxue Cao , Xiaoyu Li , Jin Chen
{"title":"Rhizospheric soil bacterial and fungal co-occurrence networks of Artemisia lavandulifolia present opposite stability patterns in volcanic areas","authors":"Ye Cui , Qingchen Xiao , Boyan Wang , Zishan Li , Yuxin Zhai , Kailin Xie , Gaoxue Cao , Xiaoyu Li , Jin Chen","doi":"10.1016/j.rhisph.2024.100927","DOIUrl":null,"url":null,"abstract":"<div><p>The rhizosphere of plants has garnered increasing attention in recent years due to its capacity to selectively attract and organize specific microorganisms that assist in mitigating environmental disruptions. Volcano is a crucial element of the land ecosystem and offers a great opportunity to research the process of soil formation, as well as its fertility and structure. However, the impact of volcanic environments on the composition and co-occurrence of microflora in the rhizosphere of Asteraceae plants remains unclear. In the present study, we comprehensively analyzed <em>Artemisia lavandulifolia</em> DC. Rhizosphere microbes in both volcanic and non-volcanic regions. The Principal Coordinates Analysis (PCoA) findings revealed significant variations in the composition of microbial communities in rhizospheric soil between the two environments. Notably, non-volcanic regions exhibited more complex microbial co-occurrence networks with more nodes and edges, indicating enhanced stability and intricacy. Furthermore, Spearman's correlation analysis provided valuable insights into the factors influencing bacterial and fungal community diversity. Specifically, Lead (Pb) was identified as a positive contributor to bacterial community diversity, while nature phosphatases (NP) played a negative role. The diversity of the fungal community primarily resulted from the positive influence of soil organic carbon (SOC) and the negative effect of total nitrogen (TN). Our findings offer new perspectives on the influence of volcanic soils on the diversity of microbial populations in plant rhizospheres.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245221982400082X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rhizosphere of plants has garnered increasing attention in recent years due to its capacity to selectively attract and organize specific microorganisms that assist in mitigating environmental disruptions. Volcano is a crucial element of the land ecosystem and offers a great opportunity to research the process of soil formation, as well as its fertility and structure. However, the impact of volcanic environments on the composition and co-occurrence of microflora in the rhizosphere of Asteraceae plants remains unclear. In the present study, we comprehensively analyzed Artemisia lavandulifolia DC. Rhizosphere microbes in both volcanic and non-volcanic regions. The Principal Coordinates Analysis (PCoA) findings revealed significant variations in the composition of microbial communities in rhizospheric soil between the two environments. Notably, non-volcanic regions exhibited more complex microbial co-occurrence networks with more nodes and edges, indicating enhanced stability and intricacy. Furthermore, Spearman's correlation analysis provided valuable insights into the factors influencing bacterial and fungal community diversity. Specifically, Lead (Pb) was identified as a positive contributor to bacterial community diversity, while nature phosphatases (NP) played a negative role. The diversity of the fungal community primarily resulted from the positive influence of soil organic carbon (SOC) and the negative effect of total nitrogen (TN). Our findings offer new perspectives on the influence of volcanic soils on the diversity of microbial populations in plant rhizospheres.