{"title":"New insight into groundwater 4He ages based on Ne isotopic equilibrium in Jianghan Plain, Central China","authors":"Xixi Zha, Xumei Mao","doi":"10.1016/j.gexplo.2024.107531","DOIUrl":null,"url":null,"abstract":"<div><p>The change of hydrostatic pressure caused by the fluctuation of groundwater table in the aquifer will lead to the partial dissolution of excess <sup>4</sup>He gas, resulting in the isotope imbalance of <sup>3</sup>He/<sup>4</sup>He-<sup>4</sup>He. The dissolved Ne in groundwater is mainly derived from the atmosphere, and its isotopic composition can correct the isotopic imbalance of <sup>3</sup>He/<sup>4</sup>He-<sup>4</sup>He. We collected thirty-eight groundwater samples from the second aquifer of the Jianghan Plain, and the isotopic concentrations and ratios of He and Ne were measured. <sup>21</sup>Ne/<sup>22</sup>Ne-<sup>20</sup>Ne/<sup>22</sup>Ne illustration is proposed to estimate the shares of atmospheric and mantle components. The <sup>21</sup>Ne content and isotopic ratios of atmospheric and mantle components are used to estimate a calculated Ne content. The difference between the calculated Ne content and the measured Ne content (∆Ne) is used to evaluate the percentage of error estimated“excess air”. The accumulation of crustal <sup>4</sup>He is corrected with the measured <sup>4</sup>He content and the percentage of error estimated “excess air”. We found the maximum percentage of error estimated “excess air” was 7.57 % occurring in the groundwater samples from the second aquifer of Jianghan Plain, and the disequilibrium of <sup>3</sup>He/<sup>4</sup>He-<sup>4</sup>He led to overestimation of the share of mantle He. The percentage of mantle He in total dissolved components is reassessed and range from 0.03 % to 0.74 %, indicating the mantle component is minor. The reassessed <sup>4</sup>He ages (1.79 ka to 21.90 ka) were uniformly older than those estimated by traditional method which only use the measured <sup>3</sup>He/<sup>4</sup>He ratio to distinguish the crust <sup>4</sup>He (1.28 ka to 18.74 ka). <sup>4</sup>He age is significantly underestimated up to 47.05 %.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037567422400147X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The change of hydrostatic pressure caused by the fluctuation of groundwater table in the aquifer will lead to the partial dissolution of excess 4He gas, resulting in the isotope imbalance of 3He/4He-4He. The dissolved Ne in groundwater is mainly derived from the atmosphere, and its isotopic composition can correct the isotopic imbalance of 3He/4He-4He. We collected thirty-eight groundwater samples from the second aquifer of the Jianghan Plain, and the isotopic concentrations and ratios of He and Ne were measured. 21Ne/22Ne-20Ne/22Ne illustration is proposed to estimate the shares of atmospheric and mantle components. The 21Ne content and isotopic ratios of atmospheric and mantle components are used to estimate a calculated Ne content. The difference between the calculated Ne content and the measured Ne content (∆Ne) is used to evaluate the percentage of error estimated“excess air”. The accumulation of crustal 4He is corrected with the measured 4He content and the percentage of error estimated “excess air”. We found the maximum percentage of error estimated “excess air” was 7.57 % occurring in the groundwater samples from the second aquifer of Jianghan Plain, and the disequilibrium of 3He/4He-4He led to overestimation of the share of mantle He. The percentage of mantle He in total dissolved components is reassessed and range from 0.03 % to 0.74 %, indicating the mantle component is minor. The reassessed 4He ages (1.79 ka to 21.90 ka) were uniformly older than those estimated by traditional method which only use the measured 3He/4He ratio to distinguish the crust 4He (1.28 ka to 18.74 ka). 4He age is significantly underestimated up to 47.05 %.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.