Jiang Xiaoyan , Li Yiming , Tang Li , Du Xiaojiao , Dai Lanhua , Hu Bin
{"title":"Theoretical Study on the Pyrolysis Mechanism of the Lignin Dimer Model Compound Catalyzed by Alkaline Earth Metal Ions Ca2+ and Mg2+","authors":"Jiang Xiaoyan , Li Yiming , Tang Li , Du Xiaojiao , Dai Lanhua , Hu Bin","doi":"10.1016/S1872-5813(24)60441-X","DOIUrl":null,"url":null,"abstract":"<div><p>It is essential to investigate the influence of alkaline earth metals on the pyrolysis mechanism and resulting products of lignin to enhance the efficient thermochemical conversion and utilization of lignin or biomass. In this study, the density functional theory method was used to simulate the pyrolytic reaction pathways of a β-O-4 type lignin dimer model compound (1-methoxy-2-(4-methoxyphenethoxy)benzene, mc) affected by alkaline earth metal ions Ca<sup>2+</sup> and Mg<sup>2+</sup>. The computational findings suggest that Ca<sup>2+</sup> and Mg<sup>2+</sup> tend to combine with the oxygen atom at the C<sub>β</sub> position and the oxygen atom on the methoxy group of the lignin dimer model compound, forming stable complexes that modify the bond lengths of the C<sub>α</sub>–C<sub>β</sub> and C<sub>β</sub>–O bonds and affect their pyrolysis energy barriers. During the catalytic pyrolysis process, the presence of Ca<sup>2+</sup> and Mg<sup>2+</sup> can promote the concerted decomposition reaction, leading to increased production of products like 1-methoxy-4-vinylbenzene, 2-methoxyphenol and catechol. Meanwhile, they can suppress homolytic cleavage reactions of the C<sub>β</sub>–O and C<sub>α</sub>–C<sub>β</sub> bonds, thereby hindering the formation of other products such as 1-ethyl-4-methoxybenzene and 2-hydroxybenzaldehyde.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 7","pages":"Pages 959-966"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258132460441X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
It is essential to investigate the influence of alkaline earth metals on the pyrolysis mechanism and resulting products of lignin to enhance the efficient thermochemical conversion and utilization of lignin or biomass. In this study, the density functional theory method was used to simulate the pyrolytic reaction pathways of a β-O-4 type lignin dimer model compound (1-methoxy-2-(4-methoxyphenethoxy)benzene, mc) affected by alkaline earth metal ions Ca2+ and Mg2+. The computational findings suggest that Ca2+ and Mg2+ tend to combine with the oxygen atom at the Cβ position and the oxygen atom on the methoxy group of the lignin dimer model compound, forming stable complexes that modify the bond lengths of the Cα–Cβ and Cβ–O bonds and affect their pyrolysis energy barriers. During the catalytic pyrolysis process, the presence of Ca2+ and Mg2+ can promote the concerted decomposition reaction, leading to increased production of products like 1-methoxy-4-vinylbenzene, 2-methoxyphenol and catechol. Meanwhile, they can suppress homolytic cleavage reactions of the Cβ–O and Cα–Cβ bonds, thereby hindering the formation of other products such as 1-ethyl-4-methoxybenzene and 2-hydroxybenzaldehyde.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.