{"title":"Stereologically corrected particle size distributions for polymer-mounted additive manufacturing powders","authors":"Courtney Gallagher , Emmett Kerr , Shaun McFadden","doi":"10.1016/j.powtec.2024.120022","DOIUrl":null,"url":null,"abstract":"<div><p>Well-defined particle size distributions are required for good flowability and powder packing properties of additive manufacturing powders. Mounting powders within a polymer and using standard metallurgical preparation techniques to cross-section and prepare powder particles for optical analysis allows for simple characterisation processes. However, measured diameters of cross-sectioned particles are typically underestimates of actual particle diameters and hence require stereological correction. The effectiveness of three stereological corrections are investigated in this work, namely the Scheil-Schwartz-Saltykov method, the Goldsmith-Cruz-Orive method and a Finite Difference Method. These methods are investigated against plasma-atomised, gas-atomised and ultrasonically processed Ti-6Al-4V powders. The corrected outputs are compared to laser size diffraction, benchmark data for each powder. Although all three stereological corrections produce improved estimations of the particle size distributions, the Finite Difference Method is recommended producing cumulative mean absolute error values of 2.4%, 3.1% and 7.5% for the plasma-atomised, gas-atomised and ultrasonically processed powders respectively.</p></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032591024006661/pdfft?md5=522af8f7d43ce51f03411f8c0a29de19&pid=1-s2.0-S0032591024006661-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024006661","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Well-defined particle size distributions are required for good flowability and powder packing properties of additive manufacturing powders. Mounting powders within a polymer and using standard metallurgical preparation techniques to cross-section and prepare powder particles for optical analysis allows for simple characterisation processes. However, measured diameters of cross-sectioned particles are typically underestimates of actual particle diameters and hence require stereological correction. The effectiveness of three stereological corrections are investigated in this work, namely the Scheil-Schwartz-Saltykov method, the Goldsmith-Cruz-Orive method and a Finite Difference Method. These methods are investigated against plasma-atomised, gas-atomised and ultrasonically processed Ti-6Al-4V powders. The corrected outputs are compared to laser size diffraction, benchmark data for each powder. Although all three stereological corrections produce improved estimations of the particle size distributions, the Finite Difference Method is recommended producing cumulative mean absolute error values of 2.4%, 3.1% and 7.5% for the plasma-atomised, gas-atomised and ultrasonically processed powders respectively.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.