Nikolay Aseyev, Anastasia Borodinova, Svetlana Pavlova, Marina Roshchina, Matvey Roshchin, Evgeny Nikitin, Pavel Balaban
{"title":"CADENCE - Neuroinformatics Tool for Supervised Calcium Events Detection.","authors":"Nikolay Aseyev, Anastasia Borodinova, Svetlana Pavlova, Marina Roshchina, Matvey Roshchin, Evgeny Nikitin, Pavel Balaban","doi":"10.1007/s12021-024-09677-3","DOIUrl":null,"url":null,"abstract":"<p><p>CADENCE is an open Python 3-written neuroinformatics tool with Qt6 graphic user interface for supervised calcium events detection. In neuronal ensembles recording during calcium imaging experiments, the output of instruments such as Celena X, Zeiss LSM 5 Live confocal microscope and Miniscope is a movie showing flashing cells somata. There are few pipelines to convert video to relative fluorescence ΔF/F, from simplest ImageJ plugins to sophisticated tools like MiniAn (Dong et al. in Elife 11, https://doi.org/10.7554/eLife.70661 , 2022). Minian, an open-source miniscope analysis pipeline. Elife, 11.). While in some areas of study relative fluorescence ΔF/F may be the desired result in itself, researchers of neuronal ensembles are typically interested in a more detailed analysis of calcium events as indirect proxy of neuronal electrical activity. For such analyses, researchers need a tool to infer calcium events from the continuous ΔF/F curve in order to create a raster representation of calcium events for later use in analysis software, such as Elephant (Denker, M., Yegenoglu, A., & Grün, S. (2018). Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics, 19.). Here we present such an open tool with supervised calcium events detection.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"379-387"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09677-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
CADENCE is an open Python 3-written neuroinformatics tool with Qt6 graphic user interface for supervised calcium events detection. In neuronal ensembles recording during calcium imaging experiments, the output of instruments such as Celena X, Zeiss LSM 5 Live confocal microscope and Miniscope is a movie showing flashing cells somata. There are few pipelines to convert video to relative fluorescence ΔF/F, from simplest ImageJ plugins to sophisticated tools like MiniAn (Dong et al. in Elife 11, https://doi.org/10.7554/eLife.70661 , 2022). Minian, an open-source miniscope analysis pipeline. Elife, 11.). While in some areas of study relative fluorescence ΔF/F may be the desired result in itself, researchers of neuronal ensembles are typically interested in a more detailed analysis of calcium events as indirect proxy of neuronal electrical activity. For such analyses, researchers need a tool to infer calcium events from the continuous ΔF/F curve in order to create a raster representation of calcium events for later use in analysis software, such as Elephant (Denker, M., Yegenoglu, A., & Grün, S. (2018). Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics, 19.). Here we present such an open tool with supervised calcium events detection.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.