Amy Isabella Sentis, Javier Rasero, Peter J Gianaros, Timothy D Verstynen
{"title":"Cortical and subcortical brain networks predict prevailing heart rate.","authors":"Amy Isabella Sentis, Javier Rasero, Peter J Gianaros, Timothy D Verstynen","doi":"10.1111/psyp.14641","DOIUrl":null,"url":null,"abstract":"<p><p>Resting heart rate may confer risk for cardiovascular disease (CVD) and other adverse cardiovascular events. While the brainstem's autonomic control over heart rate is well established, less is known about the regulatory role of higher level cortical and subcortical brain regions, especially in humans. This study sought to characterize the brain networks that predict variation in prevailing heart rate in otherwise healthy adults. We used machine learning approaches designed for complex, high-dimensional data sets, to predict variation in instantaneous heart period (the inter-heartbeat-interval) from whole-brain hemodynamic signals measured by fMRI. Task-based and resting-state fMRI, as well as peripheral physiological recordings, were taken from two data sets that included extensive repeated measurements within individuals. Our models reliably predicted instantaneous heart period from whole-brain fMRI data both within and across individuals, with prediction accuracies being highest when measured within-participants. We found that a network of cortical and subcortical brain regions, many linked to visceral motor and visceral sensory processes, were reliable predictors of variation in heart period. This adds to evidence on brain-heart interactions and constitutes an incremental step toward developing clinically applicable biomarkers of brain contributions to CVD risk.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":" ","pages":"e14641"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14641","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Resting heart rate may confer risk for cardiovascular disease (CVD) and other adverse cardiovascular events. While the brainstem's autonomic control over heart rate is well established, less is known about the regulatory role of higher level cortical and subcortical brain regions, especially in humans. This study sought to characterize the brain networks that predict variation in prevailing heart rate in otherwise healthy adults. We used machine learning approaches designed for complex, high-dimensional data sets, to predict variation in instantaneous heart period (the inter-heartbeat-interval) from whole-brain hemodynamic signals measured by fMRI. Task-based and resting-state fMRI, as well as peripheral physiological recordings, were taken from two data sets that included extensive repeated measurements within individuals. Our models reliably predicted instantaneous heart period from whole-brain fMRI data both within and across individuals, with prediction accuracies being highest when measured within-participants. We found that a network of cortical and subcortical brain regions, many linked to visceral motor and visceral sensory processes, were reliable predictors of variation in heart period. This adds to evidence on brain-heart interactions and constitutes an incremental step toward developing clinically applicable biomarkers of brain contributions to CVD risk.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.