Sandra Gavilanes-Parra, Pedro Chavero-Guerra, Rigoberto Hernández-Castro, Silvia Villanueva-Recillas, Angel Manjarrez-Hernández
{"title":"Antimicrobial Resistance in Uropathogenic <i>Escherichia coli</i> Strains Isolated from Relapses from Recurrent Urinary Tract Infections.","authors":"Sandra Gavilanes-Parra, Pedro Chavero-Guerra, Rigoberto Hernández-Castro, Silvia Villanueva-Recillas, Angel Manjarrez-Hernández","doi":"10.1089/mdr.2023.0177","DOIUrl":null,"url":null,"abstract":"<p><p>Little is known about the characteristics of uropathogenic <i>Escherichia coli</i> (UPEC) associated with recurrent urinary tract infections (RUTIs). The present study aimed to analyze the phenotypic antimicrobial resistance of recurrent UPEC isolates attributable to either relapse or reinfection. A total of 140 <i>E. coli</i> strains were isolated from 70 outpatients with RUTIs. All isolates were analyzed by random amplified polymorphic DNA-polymerase chain reaction to evaluate genetic similarity between the first and second isolates. We found that 64.2% (45/70) of outpatients had a relapse with the primary infecting <i>E. coli</i> strain and 35.7% (25/70) had reinfection with a new <i>E. coli</i> strain. Compared with reinfecting strains, relapse UPEC isolates exhibited much higher antimicrobial resistance; 89% of these isolates were multidrug-resistant and 46.6% were extended-spectrum β-lactamase producers. Our study provides evidence that RUTIs are mainly driven by the persistence of the original strain in the host (relapses) despite appropriate antibiotic treatments, and only RUTIs attributed to relapses seem to favor multidrug resistance in UPEC isolates.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"304-313"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2023.0177","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Little is known about the characteristics of uropathogenic Escherichia coli (UPEC) associated with recurrent urinary tract infections (RUTIs). The present study aimed to analyze the phenotypic antimicrobial resistance of recurrent UPEC isolates attributable to either relapse or reinfection. A total of 140 E. coli strains were isolated from 70 outpatients with RUTIs. All isolates were analyzed by random amplified polymorphic DNA-polymerase chain reaction to evaluate genetic similarity between the first and second isolates. We found that 64.2% (45/70) of outpatients had a relapse with the primary infecting E. coli strain and 35.7% (25/70) had reinfection with a new E. coli strain. Compared with reinfecting strains, relapse UPEC isolates exhibited much higher antimicrobial resistance; 89% of these isolates were multidrug-resistant and 46.6% were extended-spectrum β-lactamase producers. Our study provides evidence that RUTIs are mainly driven by the persistence of the original strain in the host (relapses) despite appropriate antibiotic treatments, and only RUTIs attributed to relapses seem to favor multidrug resistance in UPEC isolates.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.