Trypanosoma cruzi Vps34 colocalizes with Beclin1 and plays a role in parasite invasion of the host cell by modulating the expression of a sub-group of trans-sialidases
Carlos Alcides Nájera , Mercedes Soares-Silva , Fernando Y. Maeda , Wanderson Duarte DaRocha , Isabela Meneghelli , Ana Clara Mendes , Marina Ferreira Batista , Claudio Vieira Silva , José Franco da Silveira , Cristina M. Orikaza , Nobuko Yoshida , Viviane Grazielle Silva , Santuza Maria Ribeiro Teixeira , Daniella Castanheira Bartholomeu , Diana Bahia
{"title":"Trypanosoma cruzi Vps34 colocalizes with Beclin1 and plays a role in parasite invasion of the host cell by modulating the expression of a sub-group of trans-sialidases","authors":"Carlos Alcides Nájera , Mercedes Soares-Silva , Fernando Y. Maeda , Wanderson Duarte DaRocha , Isabela Meneghelli , Ana Clara Mendes , Marina Ferreira Batista , Claudio Vieira Silva , José Franco da Silveira , Cristina M. Orikaza , Nobuko Yoshida , Viviane Grazielle Silva , Santuza Maria Ribeiro Teixeira , Daniella Castanheira Bartholomeu , Diana Bahia","doi":"10.1016/j.micinf.2024.105385","DOIUrl":null,"url":null,"abstract":"<div><div><em>Trypanosoma cruzi</em>, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. <em>T. cruzi</em> gp82 and gp90 are cell surface proteins belonging to Group II <em>trans</em>-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1–Vps34 complexes involved in autophagy and protein sorting. In <em>T. cruzi</em> epimastigotes, (a <em>non</em>-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that <em>T. cruzi</em> Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.</div></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":"26 8","pages":"Article 105385"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1286457924001217","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. T. cruzi gp82 and gp90 are cell surface proteins belonging to Group II trans-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1–Vps34 complexes involved in autophagy and protein sorting. In T. cruzi epimastigotes, (a non-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that T. cruzi Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.