Design of chitosan colon delivery micro/nano particles for an Achillea millefolium extract with antiproliferative activity against colorectal cancer cells.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2024-12-01 Epub Date: 2024-07-01 DOI:10.1080/10717544.2024.2372285
María de Las Nieves Siles-Sánchez, Irene Fernández-Jalao, Laura Jaime De Pablo, Susana Santoyo
{"title":"Design of chitosan colon delivery micro/nano particles for an <i>Achillea millefolium</i> extract with antiproliferative activity against colorectal cancer cells.","authors":"María de Las Nieves Siles-Sánchez, Irene Fernández-Jalao, Laura Jaime De Pablo, Susana Santoyo","doi":"10.1080/10717544.2024.2372285","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, chitosan low molecular weight (LCH) and chitosan medium molecular weight (MCH) were employed to encapsulate a yarrow extract rich in chlorogenic acid and dicaffeoylquinic acids (DCQAs) that showed antiproliferative activity against colon adenocarcinoma cells. The design of CH micro/nanoparticles to increase the extract colon delivery was carried out by using two different techniques: ionic gelation and spray drying. Ionic gelation nanoparticles obtained were smaller and presented higher yields values than spray-drying microparticles, but spray-drying microparticles showed the best performance in terms of encapsulation efficiency (EE) (> 94%), also allowing the inclusion of a higher quantity of extract. Spray-drying microparticles designed using LCH with an LCH:extract ratio of 6:1 (1.25 mg/mL) showed a mean diameter of 1.31 ± 0.21 µm and EE values > 93%, for all phenolic compounds studied. The release profile of phenolic compounds included in this formulation, at gastrointestinal pHs (2 and 7.4), showed for most of them a small initial release, followed by an increase at 1 h, with a constant release up to 3 h. Chlorogenic acid presented the higher release values at 3 h (56.91% at pH 2; 44.45% at pH 7.4). DCQAs release at 3 h ranged between 9.01- 40.73%, being higher for 1,5- and 3,4-DCQAs. After gastrointestinal digestion, 67.65% of chlorogenic and most DCQAs remained encapsulated. Therefore, spray-drying microparticles can be proposed as a promising vehicle to increase the colon delivery of yarrow phenolics compounds (mainly chlorogenic acid and DCQAs) previously described as potential agents against colorectal cancer.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2372285","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, chitosan low molecular weight (LCH) and chitosan medium molecular weight (MCH) were employed to encapsulate a yarrow extract rich in chlorogenic acid and dicaffeoylquinic acids (DCQAs) that showed antiproliferative activity against colon adenocarcinoma cells. The design of CH micro/nanoparticles to increase the extract colon delivery was carried out by using two different techniques: ionic gelation and spray drying. Ionic gelation nanoparticles obtained were smaller and presented higher yields values than spray-drying microparticles, but spray-drying microparticles showed the best performance in terms of encapsulation efficiency (EE) (> 94%), also allowing the inclusion of a higher quantity of extract. Spray-drying microparticles designed using LCH with an LCH:extract ratio of 6:1 (1.25 mg/mL) showed a mean diameter of 1.31 ± 0.21 µm and EE values > 93%, for all phenolic compounds studied. The release profile of phenolic compounds included in this formulation, at gastrointestinal pHs (2 and 7.4), showed for most of them a small initial release, followed by an increase at 1 h, with a constant release up to 3 h. Chlorogenic acid presented the higher release values at 3 h (56.91% at pH 2; 44.45% at pH 7.4). DCQAs release at 3 h ranged between 9.01- 40.73%, being higher for 1,5- and 3,4-DCQAs. After gastrointestinal digestion, 67.65% of chlorogenic and most DCQAs remained encapsulated. Therefore, spray-drying microparticles can be proposed as a promising vehicle to increase the colon delivery of yarrow phenolics compounds (mainly chlorogenic acid and DCQAs) previously described as potential agents against colorectal cancer.

为具有抗结直肠癌细胞增殖活性的牛膝提取物设计壳聚糖结肠输送微/纳米颗粒。
本研究采用壳聚糖低分子量(LCH)和壳聚糖中分子量(MCH)包覆富含绿原酸和二咖啡酰奎宁酸(DCQAs)的西洋蓍草提取物,该提取物对结肠腺癌细胞具有抗增殖活性。通过离子凝胶化和喷雾干燥两种不同的技术,设计了 CH 微型/纳米颗粒,以增加提取物的结肠输送。与喷雾干燥微颗粒相比,离子凝胶法获得的纳米颗粒更小,产率也更高,但喷雾干燥微颗粒在包封效率(EE)方面表现最佳(> 94%),同时也允许加入更多的提取物。使用 LCH 设计的喷雾干燥微颗粒(LCH:提取物比例为 6:1,1.25 mg/mL)的平均直径为 1.31 ± 0.21 µm,EE 值大于 93%,适用于所有研究的酚类化合物。该制剂中的酚类化合物在胃肠道 pH 值(2 和 7.4)下的释放曲线显示,大多数酚类化合物的初始释放量较小,1 小时后释放量增加,3 小时后释放量保持不变。绿原酸在 3 小时后的释放量较高(pH 值为 2 时释放 56.91%;pH 值为 7.4 时释放 44.45%)。DCQAs 在 3 小时内的释放率介于 9.01% 和 40.73% 之间,其中 1,5- 和 3,4-DCQAs 的释放率较高。经胃肠道消化后,67.65%的绿原酸和大多数 DCQAs 仍被包裹。因此,喷雾干燥微颗粒可以作为一种很有前景的载体,用于增加之前被描述为潜在的结直肠癌防治药物的欧蓍草酚类化合物(主要是绿原酸和 DCQAs)的结肠输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信