Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
David B Brückner, Edouard Hannezo
{"title":"Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models.","authors":"David B Brückner, Edouard Hannezo","doi":"10.1101/cshperspect.a041653","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041653","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.

组织活性物质:将力学和信号传导整合到动力学模型中。
物理力在多细胞组织的形态发生、平衡功能和病理功能障碍中的重要性,正日益从理论和实验两方面得到证实。生物系统与泡沫、凝胶和液晶等惰性材料之间的类比,为多细胞组织的核心设计原理提供了惊人的洞察力。然而,鉴于多细胞系统的一个关键特征是能够不断消耗能量,为其产生的力提供一个活跃的源泉,这些联系似乎令人惊讶。因此,新出现的关键问题是了解这种活动是否以及如何赋予组织在经典材料中不具备的新特性,以及它们对生物功能的影响。在此,我们回顾了活性物质与组织生物学交叉领域的最新发现,重点是如何将建模与实验相结合来理解多细胞系统的动力学。这些方法表明,一些关键的生物组织尺度现象,如形态发生的形状变化、集体迁移或命运决定,都有统一的设计原则,可以用组织活性物质的物理模型来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信