Primary Creep Characterization in Porcine Lumbar Spine Subject to Repeated Loading.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Concetta Morino, Shea Middleton, Joost Op't Eynde, Elizabeth Dimbath, Jason Kait, Jason Luck, Cameron Bass
{"title":"Primary Creep Characterization in Porcine Lumbar Spine Subject to Repeated Loading.","authors":"Concetta Morino, Shea Middleton, Joost Op't Eynde, Elizabeth Dimbath, Jason Kait, Jason Luck, Cameron Bass","doi":"10.1007/s10439-024-03557-2","DOIUrl":null,"url":null,"abstract":"<p><p>Low back pain (LBP) is a common medical condition worldwide, though the etiology of injuries causing most LBP is unknown. Flexion and repeated compression increase lumbar injury risk, yet the complex viscoelastic behavior of the lumbar spine has not been characterized under this loading scheme. Characterizing the non-injurious primary creep behavior in the lumbar spine is necessary for understanding the biomechanical response preceding injury. Fifteen porcine lumbar spinal units were loaded in repeated flexion-compression with peak compressive stresses ranging from 1.41 to 4.68 MPa. Applied loading simulated real loading exposures experienced by high-speed watercraft occupants. The strain response in the primary creep region was modeled for all tests using a generalized Kelvin-Voigt model. A quasilinear viscoelastic (QLV) approach was used to separate time-dependent (creep) and stress-dependent (elastic) responses. Optimizations between the models and experimental data determined creep time constants, creep coefficients, and elastic constants associated with this tissue under repeated flexion-compression loading. Average R<sup>2</sup> for all fifteen models was 0.997. Creep time constants optimized across all fifteen models were 24 s and 580 s and contributed to 20 ± 3% and 30 ± 3% of the overall strain response, respectively. The non-transient behavior contributed to 50 ± 0% of the overall response. Elastic behavior for this porcine population had an average standard deviation of 24.5% strain across the applied stress range. The presented primary creep characterization provides the response precursor to injurious behavior in the lumbar spine. Results from this study can further inform lumbar injury prediction and kinematic models.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03557-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low back pain (LBP) is a common medical condition worldwide, though the etiology of injuries causing most LBP is unknown. Flexion and repeated compression increase lumbar injury risk, yet the complex viscoelastic behavior of the lumbar spine has not been characterized under this loading scheme. Characterizing the non-injurious primary creep behavior in the lumbar spine is necessary for understanding the biomechanical response preceding injury. Fifteen porcine lumbar spinal units were loaded in repeated flexion-compression with peak compressive stresses ranging from 1.41 to 4.68 MPa. Applied loading simulated real loading exposures experienced by high-speed watercraft occupants. The strain response in the primary creep region was modeled for all tests using a generalized Kelvin-Voigt model. A quasilinear viscoelastic (QLV) approach was used to separate time-dependent (creep) and stress-dependent (elastic) responses. Optimizations between the models and experimental data determined creep time constants, creep coefficients, and elastic constants associated with this tissue under repeated flexion-compression loading. Average R2 for all fifteen models was 0.997. Creep time constants optimized across all fifteen models were 24 s and 580 s and contributed to 20 ± 3% and 30 ± 3% of the overall strain response, respectively. The non-transient behavior contributed to 50 ± 0% of the overall response. Elastic behavior for this porcine population had an average standard deviation of 24.5% strain across the applied stress range. The presented primary creep characterization provides the response precursor to injurious behavior in the lumbar spine. Results from this study can further inform lumbar injury prediction and kinematic models.

Abstract Image

反复加载猪腰椎的初级蠕变特征。
腰痛(LBP)是全球常见的病症,但导致大多数腰痛的损伤病因尚不清楚。屈曲和反复挤压会增加腰椎受伤的风险,但在这种加载方案下,腰椎复杂的粘弹性行为尚未得到表征。要想了解腰椎受伤前的生物力学反应,就必须确定腰椎非损伤性原发性蠕变行为的特征。对 15 个猪腰椎单元进行了反复屈曲压缩加载,峰值压缩应力范围为 1.41 至 4.68 兆帕。所施加的负荷模拟了高速水上船只乘员所经历的真实负荷。所有试验都使用广义开尔文-伏依格特模型对主蠕变区的应变响应进行建模。准线性粘弹性(QLV)方法用于分离随时间变化的反应(蠕变)和随应力变化的反应(弹性)。通过对模型和实验数据进行优化,确定了在反复屈曲压缩加载条件下与该组织相关的蠕变时间常数、蠕变系数和弹性常数。所有 15 个模型的平均 R2 为 0.997。所有 15 个模型的最优蠕变时间常数分别为 24 秒和 580 秒,分别占总体应变响应的 20 ± 3% 和 30 ± 3%。非瞬态行为占总体响应的 50 ± 0%。该猪群的弹性行为在整个施加应力范围内的平均标准偏差为 24.5%。所展示的初级蠕变特征提供了腰椎损伤行为的响应前兆。这项研究的结果可为腰椎损伤预测和运动学模型提供更多信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信