{"title":"[Construction and Evaluation of a Prognostic Risk Prediction Model of Pancreatic Ductal Adenocarcinoma Based on Immune-Related Genes].","authors":"Yu Zhang, Rui-Ping Ren, Peng Wan, Xiao-Lan He","doi":"10.3881/j.issn.1000-503X.15736","DOIUrl":null,"url":null,"abstract":"<p><p>Objective To construct a risk prediction model by integrating the molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) and immune-related genes.Methods With GSE71729 data set (<i>n</i>=145) as the training set,the differentially expressed genes and differential immune-related genes between the squamous and non-squamous subtypes of PDAC were integrated to construct a regulatory network,on the basis of which five immune marker genes regulating the squamous subtype were screened out.An integrated immune score (IIS) model was constructed based on patient survival information and immune marker genes to predict the clinical prognosis of PDAC patients,and its predictive performance was tested with 5 validation sets (<i>n</i>=758).Results PDAC patients were assigned into high risk and low risk groups according to the IIS.In both training and validation sets,the overall survival of patients in the high risk group was shorter than that in the low risk group (both <i>P</i><0.001).The multivariable Cox regression showed that IIS was an independent prognostic factor for PDAC (<i>HR</i>=2.16,95%<i>CI</i>=1.50-3.10,<i>P</i><0.001).Conclusion IIS can be used for risk stratification of PDAC patients and may become a potential prognostic marker for PDAC.</p>","PeriodicalId":6919,"journal":{"name":"中国医学科学院学报","volume":"46 3","pages":"354-360"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医学科学院学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3881/j.issn.1000-503X.15736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective To construct a risk prediction model by integrating the molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) and immune-related genes.Methods With GSE71729 data set (n=145) as the training set,the differentially expressed genes and differential immune-related genes between the squamous and non-squamous subtypes of PDAC were integrated to construct a regulatory network,on the basis of which five immune marker genes regulating the squamous subtype were screened out.An integrated immune score (IIS) model was constructed based on patient survival information and immune marker genes to predict the clinical prognosis of PDAC patients,and its predictive performance was tested with 5 validation sets (n=758).Results PDAC patients were assigned into high risk and low risk groups according to the IIS.In both training and validation sets,the overall survival of patients in the high risk group was shorter than that in the low risk group (both P<0.001).The multivariable Cox regression showed that IIS was an independent prognostic factor for PDAC (HR=2.16,95%CI=1.50-3.10,P<0.001).Conclusion IIS can be used for risk stratification of PDAC patients and may become a potential prognostic marker for PDAC.
期刊介绍:
Acta Academiae Medicinae Sinicae was founded in February 1979. It is a comprehensive medical academic journal published in China and abroad, supervised by the Ministry of Health of the People's Republic of China and sponsored by the Chinese Academy of Medical Sciences and Peking Union Medical College.
The journal mainly reports the latest research results, work progress and dynamics in the fields of basic medicine, clinical medicine, pharmacy, preventive medicine, biomedicine, medical teaching and research, aiming to promote the exchange of medical information and improve the academic level of medicine. At present, the journal has been included in 10 famous foreign retrieval systems and their databases [Medline (PubMed online version), Elsevier, EMBASE, CA, WPRIM, ExtraMED, IC, JST, UPD and EBSCO-ASP]; and has been included in important domestic retrieval systems and databases [China Science Citation Database (Documentation and Information Center of the Chinese Academy of Sciences), China Core Journals Overview (Peking University Library), China Science and Technology Paper Statistical Source Database (China Science and Technology Core Journals) (China Institute of Scientific and Technological Information), China Science and Technology Journal Paper and Citation Database (China Institute of Scientific and Technological Information)].