Doping-mediated excited state dynamics of diphosphine-protected M@Au12 (M = Au, Ir) superatom nanoclusters†

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-07-01 DOI:10.1039/D4NR02051K
Wei Pei, Lei Hou, Jing Yang, Si Zhou and Jijun Zhao
{"title":"Doping-mediated excited state dynamics of diphosphine-protected M@Au12 (M = Au, Ir) superatom nanoclusters†","authors":"Wei Pei, Lei Hou, Jing Yang, Si Zhou and Jijun Zhao","doi":"10.1039/D4NR02051K","DOIUrl":null,"url":null,"abstract":"<p >Doping heterometal atoms into ligand-protected gold superatom nanoclusters (Au<small><sub><em>n</em></sub></small> NCs) is proposed to further diversify their geometrical and electronic structures and enhance their photoluminescence properties, which is attributed to the mixing and effects between atoms. However, the fundamental principles that govern the optoelectronic properties of the doped Au<small><sub><em>n</em></sub></small> NCs remain elusive. Herein, we systematically explored two prototypical 8-electron Au<small><sub><em>n</em></sub></small> (<em>n</em> = 11 and 13) NCs with and without Ir dopant atoms using comprehensive <em>ab initio</em> calculations and real-time nonadiabatic molecular dynamics simulations. These doped Au<small><sub><em>n</em></sub></small> NCs maintain their parent geometrical structures and 8-electron superatomic configuration (1S<small><sup>2</sup></small>1P<small><sup>6</sup></small>). Strong core–shell (Ir–Au<small><sub><em>n</em></sub></small>) electronic coupling significantly expands the energy gap, resulting in a weak nonadiabatic coupling matrix element, which in turn increases the carrier lifetime. This increase is mainly governed by the low-frequency vibration mode. We uncovered the relationship between electronic structures, electron–vibration, and carrier dynamics for these doped Au<small><sub><em>n</em></sub></small> NCs. These calculated results provide crucial insights for the atomically precise design of metal NCs with superior optoelectronic properties.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr02051k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Doping heterometal atoms into ligand-protected gold superatom nanoclusters (Aun NCs) is proposed to further diversify their geometrical and electronic structures and enhance their photoluminescence properties, which is attributed to the mixing and effects between atoms. However, the fundamental principles that govern the optoelectronic properties of the doped Aun NCs remain elusive. Herein, we systematically explored two prototypical 8-electron Aun (n = 11 and 13) NCs with and without Ir dopant atoms using comprehensive ab initio calculations and real-time nonadiabatic molecular dynamics simulations. These doped Aun NCs maintain their parent geometrical structures and 8-electron superatomic configuration (1S21P6). Strong core–shell (Ir–Aun) electronic coupling significantly expands the energy gap, resulting in a weak nonadiabatic coupling matrix element, which in turn increases the carrier lifetime. This increase is mainly governed by the low-frequency vibration mode. We uncovered the relationship between electronic structures, electron–vibration, and carrier dynamics for these doped Aun NCs. These calculated results provide crucial insights for the atomically precise design of metal NCs with superior optoelectronic properties.

Abstract Image

二膦保护 M@Au12(M = Au、Ir)超原子纳米簇的掺杂介导激发态动力学
有人提出在配体保护的金超原子纳米团簇(Aun NCs)中掺杂杂金属原子,以进一步丰富其几何和电子结构,并增强其光致发光特性。然而,支配掺杂 Aun NCs 光电特性的基本原理仍然难以捉摸。在此,我们利用全面的 ab initio 计算和实时非绝热分子动力学模拟,系统地探索了两种原型 8 电子 Aun(n = 11、13)NC,包括掺杂 Ir 原子和不掺杂 Ir 原子。这些掺杂 Aun NCs 保持了母体的几何结构和 8 电子超原子构型 (1S21P6)。强核壳(Ir-Aun)电子耦合显著扩大了能隙,从而产生了弱非绝热耦合矩阵元素,进而延长了载流子寿命。载流子寿命的增加主要受低频振动模式的影响。我们揭示了这些掺杂 Aun NCs 的电子结构、电子振动和载流子动力学之间的关系。这些计算结果为从原子上精确设计具有优异光电特性的金属 NC 提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信