{"title":"Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century","authors":"Qihua Peng, Shang-Ping Xie, Clara Deser","doi":"10.1038/s41558-024-02061-8","DOIUrl":null,"url":null,"abstract":"The El Niño–Southern Oscillation (ENSO) in a warming climate has been studied extensively, but the response beyond 2100 has received little attention. Here, using long-term model simulations, we find that while ENSO variability exhibits diverse changes in the short term, there is a robust reduction in ENSO variability by 2300. Continued warming beyond 2100 pushes sea surface temperature above the convective threshold over the eastern Pacific, causing collapsed mean equatorial upwelling with intensified deep convection. We show that the weakened thermocline feedback due to the collapsed upwelling and increased thermal expansion coefficient, along with enhanced thermodynamic damping, are crucial to reducing ENSO amplitude under sustained warming. Our results suggest a threshold behaviour in the tropical Pacific, where a convective atmosphere over the eastern equatorial Pacific causes dramatic shifts in ENSO variability. This threshold is not crossed under low-emission scenarios. How the El Niño–Southern Oscillation (ENSO) will change under sustained warming beyond the year 2100 is not well known. Here the authors show that while ENSO variability will exhibit diverse changes in the short term, continued warming will lead to a consistent decrease in variability in the long term.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":29.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02061-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The El Niño–Southern Oscillation (ENSO) in a warming climate has been studied extensively, but the response beyond 2100 has received little attention. Here, using long-term model simulations, we find that while ENSO variability exhibits diverse changes in the short term, there is a robust reduction in ENSO variability by 2300. Continued warming beyond 2100 pushes sea surface temperature above the convective threshold over the eastern Pacific, causing collapsed mean equatorial upwelling with intensified deep convection. We show that the weakened thermocline feedback due to the collapsed upwelling and increased thermal expansion coefficient, along with enhanced thermodynamic damping, are crucial to reducing ENSO amplitude under sustained warming. Our results suggest a threshold behaviour in the tropical Pacific, where a convective atmosphere over the eastern equatorial Pacific causes dramatic shifts in ENSO variability. This threshold is not crossed under low-emission scenarios. How the El Niño–Southern Oscillation (ENSO) will change under sustained warming beyond the year 2100 is not well known. Here the authors show that while ENSO variability will exhibit diverse changes in the short term, continued warming will lead to a consistent decrease in variability in the long term.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.